Metamath Proof Explorer


Theorem fndifnfp

Description: Express the class of non-fixed points of a function. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fndifnfp FFnAdomFI=xA|Fxx

Proof

Step Hyp Ref Expression
1 dffn2 FFnAF:AV
2 fssxp F:AVFA×V
3 1 2 sylbi FFnAFA×V
4 ssdif0 FA×VFA×V=
5 3 4 sylib FFnAFA×V=
6 5 uneq2d FFnAFIFA×V=FI
7 un0 FI=FI
8 6 7 eqtr2di FFnAFI=FIFA×V
9 df-res IA=IA×V
10 9 difeq2i FIA=FIA×V
11 difindi FIA×V=FIFA×V
12 10 11 eqtri FIA=FIFA×V
13 8 12 eqtr4di FFnAFI=FIA
14 13 dmeqd FFnAdomFI=domFIA
15 fnresi IAFnA
16 fndmdif FFnAIAFnAdomFIA=xA|FxIAx
17 15 16 mpan2 FFnAdomFIA=xA|FxIAx
18 fvresi xAIAx=x
19 18 neeq2d xAFxIAxFxx
20 19 rabbiia xA|FxIAx=xA|Fxx
21 20 a1i FFnAxA|FxIAx=xA|Fxx
22 14 17 21 3eqtrd FFnAdomFI=xA|Fxx