| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffn2 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 ⟶ V ) |
| 2 |
|
fssxp |
⊢ ( 𝐹 : 𝐴 ⟶ V → 𝐹 ⊆ ( 𝐴 × V ) ) |
| 3 |
1 2
|
sylbi |
⊢ ( 𝐹 Fn 𝐴 → 𝐹 ⊆ ( 𝐴 × V ) ) |
| 4 |
|
ssdif0 |
⊢ ( 𝐹 ⊆ ( 𝐴 × V ) ↔ ( 𝐹 ∖ ( 𝐴 × V ) ) = ∅ ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ ( 𝐴 × V ) ) = ∅ ) |
| 6 |
5
|
uneq2d |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) = ( ( 𝐹 ∖ I ) ∪ ∅ ) ) |
| 7 |
|
un0 |
⊢ ( ( 𝐹 ∖ I ) ∪ ∅ ) = ( 𝐹 ∖ I ) |
| 8 |
6 7
|
eqtr2di |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ I ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) ) |
| 9 |
|
df-res |
⊢ ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × V ) ) |
| 10 |
9
|
difeq2i |
⊢ ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = ( 𝐹 ∖ ( I ∩ ( 𝐴 × V ) ) ) |
| 11 |
|
difindi |
⊢ ( 𝐹 ∖ ( I ∩ ( 𝐴 × V ) ) ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) |
| 12 |
10 11
|
eqtri |
⊢ ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) |
| 13 |
8 12
|
eqtr4di |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ I ) = ( 𝐹 ∖ ( I ↾ 𝐴 ) ) ) |
| 14 |
13
|
dmeqd |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) ) |
| 15 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
| 16 |
|
fndmdif |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
| 17 |
15 16
|
mpan2 |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
| 18 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
| 19 |
18
|
neeq2d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 20 |
19
|
rabbiia |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } |
| 21 |
20
|
a1i |
⊢ ( 𝐹 Fn 𝐴 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
| 22 |
14 17 21
|
3eqtrd |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |