Metamath Proof Explorer


Theorem fnelnfp

Description: Property of a non-fixed point of a function. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fnelnfp FFnAXAXdomFIFXX

Proof

Step Hyp Ref Expression
1 fndifnfp FFnAdomFI=xA|Fxx
2 1 eleq2d FFnAXdomFIXxA|Fxx
3 fveq2 x=XFx=FX
4 id x=Xx=X
5 3 4 neeq12d x=XFxxFXX
6 5 elrab3 XAXxA|FxxFXX
7 2 6 sylan9bb FFnAXAXdomFIFXX