Metamath Proof Explorer


Theorem fnnfpeq0

Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015)

Ref Expression
Assertion fnnfpeq0 FFnAdomFI=F=IA

Proof

Step Hyp Ref Expression
1 rabeq0 xA|Fxx=xA¬Fxx
2 nne ¬FxxFx=x
3 fvresi xAIAx=x
4 3 eqeq2d xAFx=IAxFx=x
5 4 adantl FFnAxAFx=IAxFx=x
6 2 5 bitr4id FFnAxA¬FxxFx=IAx
7 6 ralbidva FFnAxA¬FxxxAFx=IAx
8 1 7 bitrid FFnAxA|Fxx=xAFx=IAx
9 fndifnfp FFnAdomFI=xA|Fxx
10 9 eqeq1d FFnAdomFI=xA|Fxx=
11 fnresi IAFnA
12 eqfnfv FFnAIAFnAF=IAxAFx=IAx
13 11 12 mpan2 FFnAF=IAxAFx=IAx
14 8 10 13 3bitr4d FFnAdomFI=F=IA