| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabeq0 |
|- ( { x e. A | ( F ` x ) =/= x } = (/) <-> A. x e. A -. ( F ` x ) =/= x ) |
| 2 |
|
nne |
|- ( -. ( F ` x ) =/= x <-> ( F ` x ) = x ) |
| 3 |
|
fvresi |
|- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
| 4 |
3
|
eqeq2d |
|- ( x e. A -> ( ( F ` x ) = ( ( _I |` A ) ` x ) <-> ( F ` x ) = x ) ) |
| 5 |
4
|
adantl |
|- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = ( ( _I |` A ) ` x ) <-> ( F ` x ) = x ) ) |
| 6 |
2 5
|
bitr4id |
|- ( ( F Fn A /\ x e. A ) -> ( -. ( F ` x ) =/= x <-> ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 7 |
6
|
ralbidva |
|- ( F Fn A -> ( A. x e. A -. ( F ` x ) =/= x <-> A. x e. A ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 8 |
1 7
|
bitrid |
|- ( F Fn A -> ( { x e. A | ( F ` x ) =/= x } = (/) <-> A. x e. A ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 9 |
|
fndifnfp |
|- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |
| 10 |
9
|
eqeq1d |
|- ( F Fn A -> ( dom ( F \ _I ) = (/) <-> { x e. A | ( F ` x ) =/= x } = (/) ) ) |
| 11 |
|
fnresi |
|- ( _I |` A ) Fn A |
| 12 |
|
eqfnfv |
|- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> ( F = ( _I |` A ) <-> A. x e. A ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 13 |
11 12
|
mpan2 |
|- ( F Fn A -> ( F = ( _I |` A ) <-> A. x e. A ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 14 |
8 10 13
|
3bitr4d |
|- ( F Fn A -> ( dom ( F \ _I ) = (/) <-> F = ( _I |` A ) ) ) |