| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhpsgnelbas.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
| 2 |
|
zrhpsgnelbas.s |
|- S = ( pmSgn ` N ) |
| 3 |
|
zrhpsgnelbas.y |
|- Y = ( ZRHom ` R ) |
| 4 |
1 2
|
psgnran |
|- ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |
| 5 |
4
|
3adant1 |
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |
| 6 |
|
elpri |
|- ( ( S ` Q ) e. { 1 , -u 1 } -> ( ( S ` Q ) = 1 \/ ( S ` Q ) = -u 1 ) ) |
| 7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 8 |
3 7
|
zrh1 |
|- ( R e. Ring -> ( Y ` 1 ) = ( 1r ` R ) ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
9 7
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 11 |
8 10
|
eqeltrd |
|- ( R e. Ring -> ( Y ` 1 ) e. ( Base ` R ) ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` 1 ) e. ( Base ` R ) ) |
| 13 |
|
fveq2 |
|- ( ( S ` Q ) = 1 -> ( Y ` ( S ` Q ) ) = ( Y ` 1 ) ) |
| 14 |
13
|
eleq1d |
|- ( ( S ` Q ) = 1 -> ( ( Y ` ( S ` Q ) ) e. ( Base ` R ) <-> ( Y ` 1 ) e. ( Base ` R ) ) ) |
| 15 |
12 14
|
imbitrrid |
|- ( ( S ` Q ) = 1 -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
| 16 |
|
neg1z |
|- -u 1 e. ZZ |
| 17 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 18 |
3 17 7
|
zrhmulg |
|- ( ( R e. Ring /\ -u 1 e. ZZ ) -> ( Y ` -u 1 ) = ( -u 1 ( .g ` R ) ( 1r ` R ) ) ) |
| 19 |
16 18
|
mpan2 |
|- ( R e. Ring -> ( Y ` -u 1 ) = ( -u 1 ( .g ` R ) ( 1r ` R ) ) ) |
| 20 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 21 |
16
|
a1i |
|- ( R e. Ring -> -u 1 e. ZZ ) |
| 22 |
9 17 20 21 10
|
mulgcld |
|- ( R e. Ring -> ( -u 1 ( .g ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
| 23 |
19 22
|
eqeltrd |
|- ( R e. Ring -> ( Y ` -u 1 ) e. ( Base ` R ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` -u 1 ) e. ( Base ` R ) ) |
| 25 |
|
fveq2 |
|- ( ( S ` Q ) = -u 1 -> ( Y ` ( S ` Q ) ) = ( Y ` -u 1 ) ) |
| 26 |
25
|
eleq1d |
|- ( ( S ` Q ) = -u 1 -> ( ( Y ` ( S ` Q ) ) e. ( Base ` R ) <-> ( Y ` -u 1 ) e. ( Base ` R ) ) ) |
| 27 |
24 26
|
imbitrrid |
|- ( ( S ` Q ) = -u 1 -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
| 28 |
15 27
|
jaoi |
|- ( ( ( S ` Q ) = 1 \/ ( S ` Q ) = -u 1 ) -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
| 29 |
6 28
|
syl |
|- ( ( S ` Q ) e. { 1 , -u 1 } -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
| 30 |
5 29
|
mpcom |
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) |