Metamath Proof Explorer


Theorem zrhpsgnelbas

Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses zrhpsgnelbas.p P=BaseSymGrpN
zrhpsgnelbas.s S=pmSgnN
zrhpsgnelbas.y Y=ℤRHomR
Assertion zrhpsgnelbas RRingNFinQPYSQBaseR

Proof

Step Hyp Ref Expression
1 zrhpsgnelbas.p P=BaseSymGrpN
2 zrhpsgnelbas.s S=pmSgnN
3 zrhpsgnelbas.y Y=ℤRHomR
4 1 2 psgnran NFinQPSQ11
5 4 3adant1 RRingNFinQPSQ11
6 elpri SQ11SQ=1SQ=1
7 eqid 1R=1R
8 3 7 zrh1 RRingY1=1R
9 eqid BaseR=BaseR
10 9 7 ringidcl RRing1RBaseR
11 8 10 eqeltrd RRingY1BaseR
12 11 3ad2ant1 RRingNFinQPY1BaseR
13 fveq2 SQ=1YSQ=Y1
14 13 eleq1d SQ=1YSQBaseRY1BaseR
15 12 14 imbitrrid SQ=1RRingNFinQPYSQBaseR
16 neg1z 1
17 eqid R=R
18 3 17 7 zrhmulg RRing1Y1=-1R1R
19 16 18 mpan2 RRingY1=-1R1R
20 ringgrp RRingRGrp
21 16 a1i RRing1
22 9 17 20 21 10 mulgcld RRing-1R1RBaseR
23 19 22 eqeltrd RRingY1BaseR
24 23 3ad2ant1 RRingNFinQPY1BaseR
25 fveq2 SQ=1YSQ=Y1
26 25 eleq1d SQ=1YSQBaseRY1BaseR
27 24 26 imbitrrid SQ=1RRingNFinQPYSQBaseR
28 15 27 jaoi SQ=1SQ=1RRingNFinQPYSQBaseR
29 6 28 syl SQ11RRingNFinQPYSQBaseR
30 5 29 mpcom RRingNFinQPYSQBaseR