Metamath Proof Explorer


Theorem zrh1

Description: Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses zrh1.l L=ℤRHomR
zrh1.o 1˙=1R
Assertion zrh1 RRingL1=1˙

Proof

Step Hyp Ref Expression
1 zrh1.l L=ℤRHomR
2 zrh1.o 1˙=1R
3 1 zrhrhm RRingLringRingHomR
4 zring1 1=1ring
5 4 2 rhm1 LringRingHomRL1=1˙
6 3 5 syl RRingL1=1˙