Metamath Proof Explorer


Theorem zrh0

Description: Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses zrh0.l L=ℤRHomR
zrh0.z 0˙=0R
Assertion zrh0 RRingL0=0˙

Proof

Step Hyp Ref Expression
1 zrh0.l L=ℤRHomR
2 zrh0.z 0˙=0R
3 1 zrhrhm RRingLringRingHomR
4 rhmghm LringRingHomRLringGrpHomR
5 zring0 0=0ring
6 5 2 ghmid LringGrpHomRL0=0˙
7 3 4 6 3syl RRingL0=0˙