Description: Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrh0.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| zrh0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | zrh0 | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrh0.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 2 | zrh0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 1 | zrhrhm | ⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
| 4 | rhmghm | ⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) | |
| 5 | zring0 | ⊢ 0 = ( 0g ‘ ℤring ) | |
| 6 | 5 2 | ghmid | ⊢ ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) → ( 𝐿 ‘ 0 ) = 0 ) |
| 7 | 3 4 6 | 3syl | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 0 ) = 0 ) |