Metamath Proof Explorer


Theorem zrhcopsgnelbas

Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses zrhpsgnelbas.p P=BaseSymGrpN
zrhpsgnelbas.s S=pmSgnN
zrhpsgnelbas.y Y=ℤRHomR
Assertion zrhcopsgnelbas RRingNFinQPYSQBaseR

Proof

Step Hyp Ref Expression
1 zrhpsgnelbas.p P=BaseSymGrpN
2 zrhpsgnelbas.s S=pmSgnN
3 zrhpsgnelbas.y Y=ℤRHomR
4 1 2 cofipsgn NFinQPYSQ=YSQ
5 4 3adant1 RRingNFinQPYSQ=YSQ
6 1 2 3 zrhpsgnelbas RRingNFinQPYSQBaseR
7 5 6 eqeltrd RRingNFinQPYSQBaseR