Metamath Proof Explorer


Theorem zrhmulg

Description: Value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses zrhval.l L=ℤRHomR
zrhval2.m ·˙=R
zrhval2.1 1˙=1R
Assertion zrhmulg RRingNLN=N·˙1˙

Proof

Step Hyp Ref Expression
1 zrhval.l L=ℤRHomR
2 zrhval2.m ·˙=R
3 zrhval2.1 1˙=1R
4 1 2 3 zrhval2 RRingL=nn·˙1˙
5 4 fveq1d RRingLN=nn·˙1˙N
6 oveq1 n=Nn·˙1˙=N·˙1˙
7 eqid nn·˙1˙=nn·˙1˙
8 ovex N·˙1˙V
9 6 7 8 fvmpt Nnn·˙1˙N=N·˙1˙
10 5 9 sylan9eq RRingNLN=N·˙1˙