Metamath Proof Explorer


Theorem zrhval2

Description: Alternate value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses zrhval.l L=ℤRHomR
zrhval2.m ·˙=R
zrhval2.1 1˙=1R
Assertion zrhval2 RRingL=nn·˙1˙

Proof

Step Hyp Ref Expression
1 zrhval.l L=ℤRHomR
2 zrhval2.m ·˙=R
3 zrhval2.1 1˙=1R
4 1 zrhval L=ringRingHomR
5 eqid nn·˙1˙=nn·˙1˙
6 2 5 3 mulgrhm2 RRingringRingHomR=nn·˙1˙
7 6 unieqd RRingringRingHomR=nn·˙1˙
8 zex V
9 8 mptex nn·˙1˙V
10 9 unisn nn·˙1˙=nn·˙1˙
11 7 10 eqtrdi RRingringRingHomR=nn·˙1˙
12 4 11 eqtrid RRingL=nn·˙1˙