Metamath Proof Explorer


Theorem psgnran

Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses psgnran.p P=BaseSymGrpN
psgnran.s S=pmSgnN
Assertion psgnran NFinQPSQ11

Proof

Step Hyp Ref Expression
1 psgnran.p P=BaseSymGrpN
2 psgnran.s S=pmSgnN
3 eqid SymGrpN=SymGrpN
4 3 1 sygbasnfpfi NFinQPdomQIFin
5 4 ex NFinQPdomQIFin
6 5 pm4.71d NFinQPQPdomQIFin
7 3 2 1 psgneldm QdomSQPdomQIFin
8 6 7 bitr4di NFinQPQdomS
9 eqid ranpmTrspN=ranpmTrspN
10 3 9 2 psgnvali QdomSwWordranpmTrspNQ=SymGrpNwSQ=1w
11 lencl wWordranpmTrspNw0
12 11 nn0zd wWordranpmTrspNw
13 m1expcl2 w1w11
14 prcom 11=11
15 13 14 eleqtrdi w1w11
16 12 15 syl wWordranpmTrspN1w11
17 16 adantl NFinwWordranpmTrspN1w11
18 eleq1a 1w11SQ=1wSQ11
19 17 18 syl NFinwWordranpmTrspNSQ=1wSQ11
20 19 adantld NFinwWordranpmTrspNQ=SymGrpNwSQ=1wSQ11
21 20 rexlimdva NFinwWordranpmTrspNQ=SymGrpNwSQ=1wSQ11
22 10 21 syl5 NFinQdomSSQ11
23 8 22 sylbid NFinQPSQ11
24 23 imp NFinQPSQ11