Metamath Proof Explorer


Theorem m1expcl2

Description: Closure of integer exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion m1expcl2 N1N11

Proof

Step Hyp Ref Expression
1 negex 1V
2 1 prid1 111
3 neg1ne0 10
4 neg1cn 1
5 ax-1cn 1
6 prssi 1111
7 4 5 6 mp2an 11
8 elpri x11x=1x=1
9 7 sseli y11y
10 9 mulm1d y11-1y=y
11 elpri y11y=1y=1
12 negeq y=1y=-1
13 negneg1e1 -1=1
14 1ex 1V
15 14 prid2 111
16 13 15 eqeltri -111
17 12 16 eqeltrdi y=1y11
18 negeq y=1y=1
19 18 2 eqeltrdi y=1y11
20 17 19 jaoi y=1y=1y11
21 11 20 syl y11y11
22 10 21 eqeltrd y11-1y11
23 oveq1 x=1xy=-1y
24 23 eleq1d x=1xy11-1y11
25 22 24 imbitrrid x=1y11xy11
26 9 mullidd y111y=y
27 id y11y11
28 26 27 eqeltrd y111y11
29 oveq1 x=1xy=1y
30 29 eleq1d x=1xy111y11
31 28 30 imbitrrid x=1y11xy11
32 25 31 jaoi x=1x=1y11xy11
33 8 32 syl x11y11xy11
34 33 imp x11y11xy11
35 oveq2 x=11x=11
36 ax-1ne0 10
37 divneg2 111011=11
38 5 5 36 37 mp3an 11=11
39 1div1e1 11=1
40 39 negeqi 11=1
41 38 40 eqtr3i 11=1
42 41 2 eqeltri 1111
43 35 42 eqeltrdi x=11x11
44 oveq2 x=11x=11
45 39 15 eqeltri 1111
46 44 45 eqeltrdi x=11x11
47 43 46 jaoi x=1x=11x11
48 8 47 syl x111x11
49 48 adantr x11x01x11
50 7 34 15 49 expcl2lem 11110N1N11
51 2 3 50 mp3an12 N1N11