Description: Closure of integer exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | m1expcl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negex | |
|
2 | 1 | prid1 | |
3 | neg1ne0 | |
|
4 | neg1cn | |
|
5 | ax-1cn | |
|
6 | prssi | |
|
7 | 4 5 6 | mp2an | |
8 | elpri | |
|
9 | 7 | sseli | |
10 | 9 | mulm1d | |
11 | elpri | |
|
12 | negeq | |
|
13 | negneg1e1 | |
|
14 | 1ex | |
|
15 | 14 | prid2 | |
16 | 13 15 | eqeltri | |
17 | 12 16 | eqeltrdi | |
18 | negeq | |
|
19 | 18 2 | eqeltrdi | |
20 | 17 19 | jaoi | |
21 | 11 20 | syl | |
22 | 10 21 | eqeltrd | |
23 | oveq1 | |
|
24 | 23 | eleq1d | |
25 | 22 24 | imbitrrid | |
26 | 9 | mullidd | |
27 | id | |
|
28 | 26 27 | eqeltrd | |
29 | oveq1 | |
|
30 | 29 | eleq1d | |
31 | 28 30 | imbitrrid | |
32 | 25 31 | jaoi | |
33 | 8 32 | syl | |
34 | 33 | imp | |
35 | oveq2 | |
|
36 | ax-1ne0 | |
|
37 | divneg2 | |
|
38 | 5 5 36 37 | mp3an | |
39 | 1div1e1 | |
|
40 | 39 | negeqi | |
41 | 38 40 | eqtr3i | |
42 | 41 2 | eqeltri | |
43 | 35 42 | eqeltrdi | |
44 | oveq2 | |
|
45 | 39 15 | eqeltri | |
46 | 44 45 | eqeltrdi | |
47 | 43 46 | jaoi | |
48 | 8 47 | syl | |
49 | 48 | adantr | |
50 | 7 34 15 49 | expcl2lem | |
51 | 2 3 50 | mp3an12 | |