Metamath Proof Explorer


Theorem divneg2

Description: Move negative sign inside of a division. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion divneg2 ABB0AB=AB

Proof

Step Hyp Ref Expression
1 divneg ABB0AB=AB
2 negcl AA
3 div2neg ABB0AB=AB
4 2 3 syl3an1 ABB0AB=AB
5 negneg AA=A
6 5 3ad2ant1 ABB0A=A
7 6 oveq1d ABB0AB=AB
8 1 4 7 3eqtr2d ABB0AB=AB