Metamath Proof Explorer


Theorem gsmtrcl

Description: The group sum of transpositions of a finite set is a permutation, see also psgneldm2i . (Contributed by AV, 19-Jan-2019)

Ref Expression
Hypotheses gsmtrcl.s S=SymGrpN
gsmtrcl.b B=BaseS
gsmtrcl.t T=ranpmTrspN
Assertion gsmtrcl NFinWWordTSWB

Proof

Step Hyp Ref Expression
1 gsmtrcl.s S=SymGrpN
2 gsmtrcl.b B=BaseS
3 gsmtrcl.t T=ranpmTrspN
4 eqid pmSgnN=pmSgnN
5 1 3 4 psgneldm2i NFinWWordTSWdompmSgnN
6 1 4 2 psgneldm SWdompmSgnNSWBdomSWIFin
7 ax-1 SWBNFinWWordTSWB
8 7 adantr SWBdomSWIFinNFinWWordTSWB
9 6 8 sylbi SWdompmSgnNNFinWWordTSWB
10 5 9 mpcom NFinWWordTSWB