Metamath Proof Explorer


Theorem gsmtrcl

Description: The group sum of transpositions of a finite set is a permutation, see also psgneldm2i . (Contributed by AV, 19-Jan-2019)

Ref Expression
Hypotheses gsmtrcl.s S = SymGrp N
gsmtrcl.b B = Base S
gsmtrcl.t T = ran pmTrsp N
Assertion gsmtrcl N Fin W Word T S W B

Proof

Step Hyp Ref Expression
1 gsmtrcl.s S = SymGrp N
2 gsmtrcl.b B = Base S
3 gsmtrcl.t T = ran pmTrsp N
4 eqid pmSgn N = pmSgn N
5 1 3 4 psgneldm2i N Fin W Word T S W dom pmSgn N
6 1 4 2 psgneldm S W dom pmSgn N S W B dom S W I Fin
7 ax-1 S W B N Fin W Word T S W B
8 7 adantr S W B dom S W I Fin N Fin W Word T S W B
9 6 8 sylbi S W dom pmSgn N N Fin W Word T S W B
10 5 9 mpcom N Fin W Word T S W B