| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmtrcl.s |  |-  S = ( SymGrp ` N ) | 
						
							| 2 |  | gsmtrcl.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | gsmtrcl.t |  |-  T = ran ( pmTrsp ` N ) | 
						
							| 4 |  | eqid |  |-  ( pmSgn ` N ) = ( pmSgn ` N ) | 
						
							| 5 | 1 3 4 | psgneldm2i |  |-  ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. dom ( pmSgn ` N ) ) | 
						
							| 6 | 1 4 2 | psgneldm |  |-  ( ( S gsum W ) e. dom ( pmSgn ` N ) <-> ( ( S gsum W ) e. B /\ dom ( ( S gsum W ) \ _I ) e. Fin ) ) | 
						
							| 7 |  | ax-1 |  |-  ( ( S gsum W ) e. B -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( S gsum W ) e. B /\ dom ( ( S gsum W ) \ _I ) e. Fin ) -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) | 
						
							| 9 | 6 8 | sylbi |  |-  ( ( S gsum W ) e. dom ( pmSgn ` N ) -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) | 
						
							| 10 | 5 9 | mpcom |  |-  ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) |