| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsmtrcl.s |
|- S = ( SymGrp ` N ) |
| 2 |
|
gsmtrcl.b |
|- B = ( Base ` S ) |
| 3 |
|
gsmtrcl.t |
|- T = ran ( pmTrsp ` N ) |
| 4 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
| 5 |
1 3 4
|
psgneldm2i |
|- ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. dom ( pmSgn ` N ) ) |
| 6 |
1 4 2
|
psgneldm |
|- ( ( S gsum W ) e. dom ( pmSgn ` N ) <-> ( ( S gsum W ) e. B /\ dom ( ( S gsum W ) \ _I ) e. Fin ) ) |
| 7 |
|
ax-1 |
|- ( ( S gsum W ) e. B -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
| 8 |
7
|
adantr |
|- ( ( ( S gsum W ) e. B /\ dom ( ( S gsum W ) \ _I ) e. Fin ) -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
| 9 |
6 8
|
sylbi |
|- ( ( S gsum W ) e. dom ( pmSgn ` N ) -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
| 10 |
5 9
|
mpcom |
|- ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) |