| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfitr.g |  |-  G = ( SymGrp ` N ) | 
						
							| 2 |  | psgnfitr.p |  |-  B = ( Base ` G ) | 
						
							| 3 |  | psgnfitr.t |  |-  T = ran ( pmTrsp ` N ) | 
						
							| 4 |  | eqid |  |-  ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) | 
						
							| 5 | 3 1 2 4 | symggen2 |  |-  ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = B ) | 
						
							| 6 | 1 | symggrp |  |-  ( N e. Fin -> G e. Grp ) | 
						
							| 7 | 6 | grpmndd |  |-  ( N e. Fin -> G e. Mnd ) | 
						
							| 8 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 9 | 3 1 8 | symgtrf |  |-  T C_ ( Base ` G ) | 
						
							| 10 | 8 4 | gsumwspan |  |-  ( ( G e. Mnd /\ T C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) | 
						
							| 11 | 7 9 10 | sylancl |  |-  ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) | 
						
							| 12 | 5 11 | eqtr3d |  |-  ( N e. Fin -> B = ran ( w e. Word T |-> ( G gsum w ) ) ) | 
						
							| 13 | 12 | eleq2d |  |-  ( N e. Fin -> ( Q e. B <-> Q e. ran ( w e. Word T |-> ( G gsum w ) ) ) ) | 
						
							| 14 |  | eqid |  |-  ( w e. Word T |-> ( G gsum w ) ) = ( w e. Word T |-> ( G gsum w ) ) | 
						
							| 15 |  | ovex |  |-  ( G gsum w ) e. _V | 
						
							| 16 | 14 15 | elrnmpti |  |-  ( Q e. ran ( w e. Word T |-> ( G gsum w ) ) <-> E. w e. Word T Q = ( G gsum w ) ) | 
						
							| 17 | 13 16 | bitrdi |  |-  ( N e. Fin -> ( Q e. B <-> E. w e. Word T Q = ( G gsum w ) ) ) |