Metamath Proof Explorer


Theorem psgnfitr

Description: A permutation of a finite set is generated by transpositions. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfitr.g
|- G = ( SymGrp ` N )
psgnfitr.p
|- B = ( Base ` G )
psgnfitr.t
|- T = ran ( pmTrsp ` N )
Assertion psgnfitr
|- ( N e. Fin -> ( Q e. B <-> E. w e. Word T Q = ( G gsum w ) ) )

Proof

Step Hyp Ref Expression
1 psgnfitr.g
 |-  G = ( SymGrp ` N )
2 psgnfitr.p
 |-  B = ( Base ` G )
3 psgnfitr.t
 |-  T = ran ( pmTrsp ` N )
4 eqid
 |-  ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) )
5 3 1 2 4 symggen2
 |-  ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = B )
6 1 symggrp
 |-  ( N e. Fin -> G e. Grp )
7 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
8 6 7 syl
 |-  ( N e. Fin -> G e. Mnd )
9 eqid
 |-  ( Base ` G ) = ( Base ` G )
10 3 1 9 symgtrf
 |-  T C_ ( Base ` G )
11 9 4 gsumwspan
 |-  ( ( G e. Mnd /\ T C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) )
12 8 10 11 sylancl
 |-  ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) )
13 5 12 eqtr3d
 |-  ( N e. Fin -> B = ran ( w e. Word T |-> ( G gsum w ) ) )
14 13 eleq2d
 |-  ( N e. Fin -> ( Q e. B <-> Q e. ran ( w e. Word T |-> ( G gsum w ) ) ) )
15 eqid
 |-  ( w e. Word T |-> ( G gsum w ) ) = ( w e. Word T |-> ( G gsum w ) )
16 ovex
 |-  ( G gsum w ) e. _V
17 15 16 elrnmpti
 |-  ( Q e. ran ( w e. Word T |-> ( G gsum w ) ) <-> E. w e. Word T Q = ( G gsum w ) )
18 14 17 bitrdi
 |-  ( N e. Fin -> ( Q e. B <-> E. w e. Word T Q = ( G gsum w ) ) )