| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfitr.g |  |-  G = ( SymGrp ` N ) | 
						
							| 2 |  | psgnfitr.p |  |-  B = ( Base ` G ) | 
						
							| 3 |  | psgnfitr.t |  |-  T = ran ( pmTrsp ` N ) | 
						
							| 4 |  | simpr |  |-  ( ( N e. Fin /\ Q e. B ) -> Q e. B ) | 
						
							| 5 | 1 2 | sygbasnfpfi |  |-  ( ( N e. Fin /\ Q e. B ) -> dom ( Q \ _I ) e. Fin ) | 
						
							| 6 |  | eqid |  |-  ( pmSgn ` N ) = ( pmSgn ` N ) | 
						
							| 7 | 1 6 2 | psgneldm |  |-  ( Q e. dom ( pmSgn ` N ) <-> ( Q e. B /\ dom ( Q \ _I ) e. Fin ) ) | 
						
							| 8 | 4 5 7 | sylanbrc |  |-  ( ( N e. Fin /\ Q e. B ) -> Q e. dom ( pmSgn ` N ) ) | 
						
							| 9 | 1 3 6 | psgneu |  |-  ( Q e. dom ( pmSgn ` N ) -> E! s E. w e. Word T ( Q = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( N e. Fin /\ Q e. B ) -> E! s E. w e. Word T ( Q = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |