| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnval.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnval.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 3 |  | psgnval.n |  |-  N = ( pmSgn ` D ) | 
						
							| 4 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 5 | 1 3 4 | psgneldm |  |-  ( P e. dom N <-> ( P e. ( Base ` G ) /\ dom ( P \ _I ) e. Fin ) ) | 
						
							| 6 | 5 | simplbi |  |-  ( P e. dom N -> P e. ( Base ` G ) ) | 
						
							| 7 | 1 4 | elbasfv |  |-  ( P e. ( Base ` G ) -> D e. _V ) | 
						
							| 8 | 6 7 | syl |  |-  ( P e. dom N -> D e. _V ) | 
						
							| 9 | 1 2 3 | psgneldm2 |  |-  ( D e. _V -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( P e. dom N -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) ) | 
						
							| 11 | 10 | ibi |  |-  ( P e. dom N -> E. w e. Word T P = ( G gsum w ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( P e. dom N /\ w e. Word T ) /\ P = ( G gsum w ) ) -> P = ( G gsum w ) ) | 
						
							| 13 |  | eqid |  |-  ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) | 
						
							| 14 |  | ovex |  |-  ( -u 1 ^ ( # ` w ) ) e. _V | 
						
							| 15 |  | eqeq1 |  |-  ( s = ( -u 1 ^ ( # ` w ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 16 | 15 | anbi2d |  |-  ( s = ( -u 1 ^ ( # ` w ) ) -> ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 17 | 14 16 | spcev |  |-  ( ( P = ( G gsum w ) /\ ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 18 | 12 13 17 | sylancl |  |-  ( ( ( P e. dom N /\ w e. Word T ) /\ P = ( G gsum w ) ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 19 | 18 | ex |  |-  ( ( P e. dom N /\ w e. Word T ) -> ( P = ( G gsum w ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 20 | 19 | reximdva |  |-  ( P e. dom N -> ( E. w e. Word T P = ( G gsum w ) -> E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 21 | 11 20 | mpd |  |-  ( P e. dom N -> E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 22 |  | rexcom4 |  |-  ( E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 23 | 21 22 | sylib |  |-  ( P e. dom N -> E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 24 |  | reeanv |  |-  ( E. w e. Word T E. x e. Word T ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) <-> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) | 
						
							| 25 | 8 | ad2antrr |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> D e. _V ) | 
						
							| 26 |  | simplrl |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> w e. Word T ) | 
						
							| 27 |  | simplrr |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> x e. Word T ) | 
						
							| 28 |  | simprll |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> P = ( G gsum w ) ) | 
						
							| 29 |  | simprrl |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> P = ( G gsum x ) ) | 
						
							| 30 | 28 29 | eqtr3d |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> ( G gsum w ) = ( G gsum x ) ) | 
						
							| 31 | 1 2 25 26 27 30 | psgnuni |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) | 
						
							| 32 |  | simprlr |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> s = ( -u 1 ^ ( # ` w ) ) ) | 
						
							| 33 |  | simprrr |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> t = ( -u 1 ^ ( # ` x ) ) ) | 
						
							| 34 | 31 32 33 | 3eqtr4d |  |-  ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> s = t ) | 
						
							| 35 | 34 | ex |  |-  ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) -> ( ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) | 
						
							| 36 | 35 | rexlimdvva |  |-  ( P e. dom N -> ( E. w e. Word T E. x e. Word T ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) | 
						
							| 37 | 24 36 | biimtrrid |  |-  ( P e. dom N -> ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) | 
						
							| 38 | 37 | alrimivv |  |-  ( P e. dom N -> A. s A. t ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) | 
						
							| 39 |  | eqeq1 |  |-  ( s = t -> ( s = ( -u 1 ^ ( # ` w ) ) <-> t = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 40 | 39 | anbi2d |  |-  ( s = t -> ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 41 | 40 | rexbidv |  |-  ( s = t -> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 42 |  | oveq2 |  |-  ( w = x -> ( G gsum w ) = ( G gsum x ) ) | 
						
							| 43 | 42 | eqeq2d |  |-  ( w = x -> ( P = ( G gsum w ) <-> P = ( G gsum x ) ) ) | 
						
							| 44 |  | fveq2 |  |-  ( w = x -> ( # ` w ) = ( # ` x ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( w = x -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) | 
						
							| 46 | 45 | eqeq2d |  |-  ( w = x -> ( t = ( -u 1 ^ ( # ` w ) ) <-> t = ( -u 1 ^ ( # ` x ) ) ) ) | 
						
							| 47 | 43 46 | anbi12d |  |-  ( w = x -> ( ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) | 
						
							| 48 | 47 | cbvrexvw |  |-  ( E. w e. Word T ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) <-> E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) | 
						
							| 49 | 41 48 | bitrdi |  |-  ( s = t -> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) | 
						
							| 50 | 49 | eu4 |  |-  ( E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ A. s A. t ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) ) | 
						
							| 51 | 23 38 50 | sylanbrc |  |-  ( P e. dom N -> E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |