| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnval.g |  | 
						
							| 2 |  | psgnval.t |  | 
						
							| 3 |  | psgnval.n |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 1 3 4 | psgneldm |  | 
						
							| 6 | 5 | simplbi |  | 
						
							| 7 | 1 4 | elbasfv |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 | 1 2 3 | psgneldm2 |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 10 | ibi |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | ovex |  | 
						
							| 15 |  | eqeq1 |  | 
						
							| 16 | 15 | anbi2d |  | 
						
							| 17 | 14 16 | spcev |  | 
						
							| 18 | 12 13 17 | sylancl |  | 
						
							| 19 | 18 | ex |  | 
						
							| 20 | 19 | reximdva |  | 
						
							| 21 | 11 20 | mpd |  | 
						
							| 22 |  | rexcom4 |  | 
						
							| 23 | 21 22 | sylib |  | 
						
							| 24 |  | reeanv |  | 
						
							| 25 | 8 | ad2antrr |  | 
						
							| 26 |  | simplrl |  | 
						
							| 27 |  | simplrr |  | 
						
							| 28 |  | simprll |  | 
						
							| 29 |  | simprrl |  | 
						
							| 30 | 28 29 | eqtr3d |  | 
						
							| 31 | 1 2 25 26 27 30 | psgnuni |  | 
						
							| 32 |  | simprlr |  | 
						
							| 33 |  | simprrr |  | 
						
							| 34 | 31 32 33 | 3eqtr4d |  | 
						
							| 35 | 34 | ex |  | 
						
							| 36 | 35 | rexlimdvva |  | 
						
							| 37 | 24 36 | biimtrrid |  | 
						
							| 38 | 37 | alrimivv |  | 
						
							| 39 |  | eqeq1 |  | 
						
							| 40 | 39 | anbi2d |  | 
						
							| 41 | 40 | rexbidv |  | 
						
							| 42 |  | oveq2 |  | 
						
							| 43 | 42 | eqeq2d |  | 
						
							| 44 |  | fveq2 |  | 
						
							| 45 | 44 | oveq2d |  | 
						
							| 46 | 45 | eqeq2d |  | 
						
							| 47 | 43 46 | anbi12d |  | 
						
							| 48 | 47 | cbvrexvw |  | 
						
							| 49 | 41 48 | bitrdi |  | 
						
							| 50 | 49 | eu4 |  | 
						
							| 51 | 23 38 50 | sylanbrc |  |