Metamath Proof Explorer


Theorem psgneldm2

Description: The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnval.g G=SymGrpD
psgnval.t T=ranpmTrspD
psgnval.n N=pmSgnD
Assertion psgneldm2 DVPdomNwWordTP=Gw

Proof

Step Hyp Ref Expression
1 psgnval.g G=SymGrpD
2 psgnval.t T=ranpmTrspD
3 psgnval.n N=pmSgnD
4 eqid BaseG=BaseG
5 eqid pBaseG|dompIFin=pBaseG|dompIFin
6 1 4 5 3 psgnfn NFnpBaseG|dompIFin
7 6 fndmi domN=pBaseG|dompIFin
8 eqid mrClsSubMndG=mrClsSubMndG
9 2 1 4 8 symggen DVmrClsSubMndGT=pBaseG|dompIFin
10 1 symggrp DVGGrp
11 10 grpmndd DVGMnd
12 2 1 4 symgtrf TBaseG
13 4 8 gsumwspan GMndTBaseGmrClsSubMndGT=ranwWordTGw
14 11 12 13 sylancl DVmrClsSubMndGT=ranwWordTGw
15 9 14 eqtr3d DVpBaseG|dompIFin=ranwWordTGw
16 7 15 eqtrid DVdomN=ranwWordTGw
17 16 eleq2d DVPdomNPranwWordTGw
18 eqid wWordTGw=wWordTGw
19 ovex GwV
20 18 19 elrnmpti PranwWordTGwwWordTP=Gw
21 17 20 bitrdi DVPdomNwWordTP=Gw