Metamath Proof Explorer


Theorem psgneldm2

Description: The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnval.g G = SymGrp D
psgnval.t T = ran pmTrsp D
psgnval.n N = pmSgn D
Assertion psgneldm2 D V P dom N w Word T P = G w

Proof

Step Hyp Ref Expression
1 psgnval.g G = SymGrp D
2 psgnval.t T = ran pmTrsp D
3 psgnval.n N = pmSgn D
4 eqid Base G = Base G
5 eqid p Base G | dom p I Fin = p Base G | dom p I Fin
6 1 4 5 3 psgnfn N Fn p Base G | dom p I Fin
7 6 fndmi dom N = p Base G | dom p I Fin
8 eqid mrCls SubMnd G = mrCls SubMnd G
9 2 1 4 8 symggen D V mrCls SubMnd G T = p Base G | dom p I Fin
10 1 symggrp D V G Grp
11 10 grpmndd D V G Mnd
12 2 1 4 symgtrf T Base G
13 4 8 gsumwspan G Mnd T Base G mrCls SubMnd G T = ran w Word T G w
14 11 12 13 sylancl D V mrCls SubMnd G T = ran w Word T G w
15 9 14 eqtr3d D V p Base G | dom p I Fin = ran w Word T G w
16 7 15 eqtrid D V dom N = ran w Word T G w
17 16 eleq2d D V P dom N P ran w Word T G w
18 eqid w Word T G w = w Word T G w
19 ovex G w V
20 18 19 elrnmpti P ran w Word T G w w Word T P = G w
21 17 20 bitrdi D V P dom N w Word T P = G w