Metamath Proof Explorer


Theorem psgneldm2

Description: The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnval.g
|- G = ( SymGrp ` D )
psgnval.t
|- T = ran ( pmTrsp ` D )
psgnval.n
|- N = ( pmSgn ` D )
Assertion psgneldm2
|- ( D e. V -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) )

Proof

Step Hyp Ref Expression
1 psgnval.g
 |-  G = ( SymGrp ` D )
2 psgnval.t
 |-  T = ran ( pmTrsp ` D )
3 psgnval.n
 |-  N = ( pmSgn ` D )
4 eqid
 |-  ( Base ` G ) = ( Base ` G )
5 eqid
 |-  { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin }
6 1 4 5 3 psgnfn
 |-  N Fn { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin }
7 6 fndmi
 |-  dom N = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin }
8 eqid
 |-  ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) )
9 2 1 4 8 symggen
 |-  ( D e. V -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } )
10 1 symggrp
 |-  ( D e. V -> G e. Grp )
11 10 grpmndd
 |-  ( D e. V -> G e. Mnd )
12 2 1 4 symgtrf
 |-  T C_ ( Base ` G )
13 4 8 gsumwspan
 |-  ( ( G e. Mnd /\ T C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) )
14 11 12 13 sylancl
 |-  ( D e. V -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) )
15 9 14 eqtr3d
 |-  ( D e. V -> { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } = ran ( w e. Word T |-> ( G gsum w ) ) )
16 7 15 eqtrid
 |-  ( D e. V -> dom N = ran ( w e. Word T |-> ( G gsum w ) ) )
17 16 eleq2d
 |-  ( D e. V -> ( P e. dom N <-> P e. ran ( w e. Word T |-> ( G gsum w ) ) ) )
18 eqid
 |-  ( w e. Word T |-> ( G gsum w ) ) = ( w e. Word T |-> ( G gsum w ) )
19 ovex
 |-  ( G gsum w ) e. _V
20 18 19 elrnmpti
 |-  ( P e. ran ( w e. Word T |-> ( G gsum w ) ) <-> E. w e. Word T P = ( G gsum w ) )
21 17 20 bitrdi
 |-  ( D e. V -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) )