| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnval.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnval.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 3 |  | psgnval.n |  |-  N = ( pmSgn ` D ) | 
						
							| 4 |  | eqid |  |-  ( G gsum W ) = ( G gsum W ) | 
						
							| 5 |  | oveq2 |  |-  ( w = W -> ( G gsum w ) = ( G gsum W ) ) | 
						
							| 6 | 5 | rspceeqv |  |-  ( ( W e. Word T /\ ( G gsum W ) = ( G gsum W ) ) -> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) | 
						
							| 7 | 4 6 | mpan2 |  |-  ( W e. Word T -> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) | 
						
							| 8 | 1 2 3 | psgneldm2 |  |-  ( D e. V -> ( ( G gsum W ) e. dom N <-> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) ) | 
						
							| 9 | 8 | biimpar |  |-  ( ( D e. V /\ E. w e. Word T ( G gsum W ) = ( G gsum w ) ) -> ( G gsum W ) e. dom N ) | 
						
							| 10 | 7 9 | sylan2 |  |-  ( ( D e. V /\ W e. Word T ) -> ( G gsum W ) e. dom N ) |