Metamath Proof Explorer


Theorem symggrp

Description: The symmetric group on a set A is a group. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 28-Jan-2024)

Ref Expression
Hypothesis symggrp.1 G=SymGrpA
Assertion symggrp AVGGrp

Proof

Step Hyp Ref Expression
1 symggrp.1 G=SymGrpA
2 eqidd AVBaseG=BaseG
3 eqidd AV+G=+G
4 eqid BaseG=BaseG
5 eqid +G=+G
6 1 4 5 symgcl xBaseGyBaseGx+GyBaseG
7 6 3adant1 AVxBaseGyBaseGx+GyBaseG
8 1 4 5 symgcl fBaseGgBaseGf+GgBaseG
9 1 4 5 symgov fBaseGgBaseGf+Gg=fg
10 8 9 symggrplem xBaseGyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
11 10 adantl AVxBaseGyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
12 1 idresperm AVIABaseG
13 1 4 5 symgov IABaseGxBaseGIA+Gx=IAx
14 12 13 sylan AVxBaseGIA+Gx=IAx
15 1 4 elsymgbas AVxBaseGx:A1-1 ontoA
16 15 biimpa AVxBaseGx:A1-1 ontoA
17 f1of x:A1-1 ontoAx:AA
18 fcoi2 x:AAIAx=x
19 16 17 18 3syl AVxBaseGIAx=x
20 14 19 eqtrd AVxBaseGIA+Gx=x
21 f1ocnv x:A1-1 ontoAx-1:A1-1 ontoA
22 21 a1i AVx:A1-1 ontoAx-1:A1-1 ontoA
23 1 4 elsymgbas AVx-1BaseGx-1:A1-1 ontoA
24 22 15 23 3imtr4d AVxBaseGx-1BaseG
25 24 imp AVxBaseGx-1BaseG
26 1 4 5 symgov x-1BaseGxBaseGx-1+Gx=x-1x
27 25 26 sylancom AVxBaseGx-1+Gx=x-1x
28 f1ococnv1 x:A1-1 ontoAx-1x=IA
29 16 28 syl AVxBaseGx-1x=IA
30 27 29 eqtrd AVxBaseGx-1+Gx=IA
31 2 3 7 11 12 20 25 30 isgrpd AVGGrp