Description: The symmetric group on a set A is a group. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 28-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | symggrp.1 | |
|
Assertion | symggrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symggrp.1 | |
|
2 | eqidd | |
|
3 | eqidd | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 4 5 | symgcl | |
7 | 6 | 3adant1 | |
8 | 1 4 5 | symgcl | |
9 | 1 4 5 | symgov | |
10 | 8 9 | symggrplem | |
11 | 10 | adantl | |
12 | 1 | idresperm | |
13 | 1 4 5 | symgov | |
14 | 12 13 | sylan | |
15 | 1 4 | elsymgbas | |
16 | 15 | biimpa | |
17 | f1of | |
|
18 | fcoi2 | |
|
19 | 16 17 18 | 3syl | |
20 | 14 19 | eqtrd | |
21 | f1ocnv | |
|
22 | 21 | a1i | |
23 | 1 4 | elsymgbas | |
24 | 22 15 23 | 3imtr4d | |
25 | 24 | imp | |
26 | 1 4 5 | symgov | |
27 | 25 26 | sylancom | |
28 | f1ococnv1 | |
|
29 | 16 28 | syl | |
30 | 27 29 | eqtrd | |
31 | 2 3 7 11 12 20 25 30 | isgrpd | |