Metamath Proof Explorer


Theorem symggrplem

Description: Lemma for symggrp and efmndsgrp . Conditions for an operation to be associative. Formerly part of proof for symggrp . (Contributed by AV, 28-Jan-2024)

Ref Expression
Hypotheses symggrplem.c xByBx+˙yB
symggrplem.p xByBx+˙y=xy
Assertion symggrplem XBYBZBX+˙Y+˙Z=X+˙Y+˙Z

Proof

Step Hyp Ref Expression
1 symggrplem.c xByBx+˙yB
2 symggrplem.p xByBx+˙y=xy
3 coass XYZ=XYZ
4 oveq1 x=Xx+˙y=X+˙y
5 4 eleq1d x=Xx+˙yBX+˙yB
6 oveq2 y=YX+˙y=X+˙Y
7 6 eleq1d y=YX+˙yBX+˙YB
8 5 7 1 vtocl2ga XBYBX+˙YB
9 oveq1 x=X+˙Yx+˙y=X+˙Y+˙y
10 coeq1 x=X+˙Yxy=X+˙Yy
11 9 10 eqeq12d x=X+˙Yx+˙y=xyX+˙Y+˙y=X+˙Yy
12 oveq2 y=ZX+˙Y+˙y=X+˙Y+˙Z
13 coeq2 y=ZX+˙Yy=X+˙YZ
14 12 13 eqeq12d y=ZX+˙Y+˙y=X+˙YyX+˙Y+˙Z=X+˙YZ
15 11 14 2 vtocl2ga X+˙YBZBX+˙Y+˙Z=X+˙YZ
16 8 15 stoic3 XBYBZBX+˙Y+˙Z=X+˙YZ
17 coeq1 x=Xxy=Xy
18 4 17 eqeq12d x=Xx+˙y=xyX+˙y=Xy
19 coeq2 y=YXy=XY
20 6 19 eqeq12d y=YX+˙y=XyX+˙Y=XY
21 18 20 2 vtocl2ga XBYBX+˙Y=XY
22 21 3adant3 XBYBZBX+˙Y=XY
23 22 coeq1d XBYBZBX+˙YZ=XYZ
24 16 23 eqtrd XBYBZBX+˙Y+˙Z=XYZ
25 simp1 XBYBZBXB
26 oveq1 x=Yx+˙y=Y+˙y
27 26 eleq1d x=Yx+˙yBY+˙yB
28 oveq2 y=ZY+˙y=Y+˙Z
29 28 eleq1d y=ZY+˙yBY+˙ZB
30 27 29 1 vtocl2ga YBZBY+˙ZB
31 30 3adant1 XBYBZBY+˙ZB
32 oveq2 y=Y+˙ZX+˙y=X+˙Y+˙Z
33 coeq2 y=Y+˙ZXy=XY+˙Z
34 32 33 eqeq12d y=Y+˙ZX+˙y=XyX+˙Y+˙Z=XY+˙Z
35 18 34 2 vtocl2ga XBY+˙ZBX+˙Y+˙Z=XY+˙Z
36 25 31 35 syl2anc XBYBZBX+˙Y+˙Z=XY+˙Z
37 coeq1 x=Yxy=Yy
38 26 37 eqeq12d x=Yx+˙y=xyY+˙y=Yy
39 coeq2 y=ZYy=YZ
40 28 39 eqeq12d y=ZY+˙y=YyY+˙Z=YZ
41 38 40 2 vtocl2ga YBZBY+˙Z=YZ
42 41 3adant1 XBYBZBY+˙Z=YZ
43 42 coeq2d XBYBZBXY+˙Z=XYZ
44 36 43 eqtrd XBYBZBX+˙Y+˙Z=XYZ
45 3 24 44 3eqtr4a XBYBZBX+˙Y+˙Z=X+˙Y+˙Z