Description: Lemma for symggrp and efmndsgrp . Conditions for an operation to be associative. Formerly part of proof for symggrp . (Contributed by AV, 28-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symggrplem.c | |
|
symggrplem.p | |
||
Assertion | symggrplem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symggrplem.c | |
|
2 | symggrplem.p | |
|
3 | coass | |
|
4 | oveq1 | |
|
5 | 4 | eleq1d | |
6 | oveq2 | |
|
7 | 6 | eleq1d | |
8 | 5 7 1 | vtocl2ga | |
9 | oveq1 | |
|
10 | coeq1 | |
|
11 | 9 10 | eqeq12d | |
12 | oveq2 | |
|
13 | coeq2 | |
|
14 | 12 13 | eqeq12d | |
15 | 11 14 2 | vtocl2ga | |
16 | 8 15 | stoic3 | |
17 | coeq1 | |
|
18 | 4 17 | eqeq12d | |
19 | coeq2 | |
|
20 | 6 19 | eqeq12d | |
21 | 18 20 2 | vtocl2ga | |
22 | 21 | 3adant3 | |
23 | 22 | coeq1d | |
24 | 16 23 | eqtrd | |
25 | simp1 | |
|
26 | oveq1 | |
|
27 | 26 | eleq1d | |
28 | oveq2 | |
|
29 | 28 | eleq1d | |
30 | 27 29 1 | vtocl2ga | |
31 | 30 | 3adant1 | |
32 | oveq2 | |
|
33 | coeq2 | |
|
34 | 32 33 | eqeq12d | |
35 | 18 34 2 | vtocl2ga | |
36 | 25 31 35 | syl2anc | |
37 | coeq1 | |
|
38 | 26 37 | eqeq12d | |
39 | coeq2 | |
|
40 | 28 39 | eqeq12d | |
41 | 38 40 2 | vtocl2ga | |
42 | 41 | 3adant1 | |
43 | 42 | coeq2d | |
44 | 36 43 | eqtrd | |
45 | 3 24 44 | 3eqtr4a | |