Metamath Proof Explorer


Theorem isgrpd

Description: Deduce a group from its properties. Unlike isgrpd2 , this one goes straight from the base properties rather than going through Mnd . N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 6-Jun-2013) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses isgrpd.b φ B = Base G
isgrpd.p φ + ˙ = + G
isgrpd.c φ x B y B x + ˙ y B
isgrpd.a φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
isgrpd.z φ 0 ˙ B
isgrpd.i φ x B 0 ˙ + ˙ x = x
isgrpd.n φ x B N B
isgrpd.j φ x B N + ˙ x = 0 ˙
Assertion isgrpd φ G Grp

Proof

Step Hyp Ref Expression
1 isgrpd.b φ B = Base G
2 isgrpd.p φ + ˙ = + G
3 isgrpd.c φ x B y B x + ˙ y B
4 isgrpd.a φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
5 isgrpd.z φ 0 ˙ B
6 isgrpd.i φ x B 0 ˙ + ˙ x = x
7 isgrpd.n φ x B N B
8 isgrpd.j φ x B N + ˙ x = 0 ˙
9 oveq1 y = N y + ˙ x = N + ˙ x
10 9 eqeq1d y = N y + ˙ x = 0 ˙ N + ˙ x = 0 ˙
11 10 rspcev N B N + ˙ x = 0 ˙ y B y + ˙ x = 0 ˙
12 7 8 11 syl2anc φ x B y B y + ˙ x = 0 ˙
13 1 2 3 4 5 6 12 isgrpde φ G Grp