Metamath Proof Explorer


Theorem isgrpde

Description: Deduce a group from its properties. In this version of isgrpd , we don't assume there is an expression for the inverse of x . (Contributed by NM, 6-Jan-2015)

Ref Expression
Hypotheses isgrpd.b φ B = Base G
isgrpd.p φ + ˙ = + G
isgrpd.c φ x B y B x + ˙ y B
isgrpd.a φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
isgrpd.z φ 0 ˙ B
isgrpd.i φ x B 0 ˙ + ˙ x = x
isgrpde.n φ x B y B y + ˙ x = 0 ˙
Assertion isgrpde φ G Grp

Proof

Step Hyp Ref Expression
1 isgrpd.b φ B = Base G
2 isgrpd.p φ + ˙ = + G
3 isgrpd.c φ x B y B x + ˙ y B
4 isgrpd.a φ x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
5 isgrpd.z φ 0 ˙ B
6 isgrpd.i φ x B 0 ˙ + ˙ x = x
7 isgrpde.n φ x B y B y + ˙ x = 0 ˙
8 3 5 6 4 7 grpridd φ x B x + ˙ 0 ˙ = x
9 1 2 5 6 8 grpidd φ 0 ˙ = 0 G
10 1 2 3 4 5 6 8 ismndd φ G Mnd
11 1 2 9 10 7 isgrpd2e φ G Grp