Metamath Proof Explorer


Theorem isgrpd2e

Description: Deduce a group from its properties. In this version of isgrpd2 , we don't assume there is an expression for the inverse of x . (Contributed by NM, 10-Aug-2013)

Ref Expression
Hypotheses isgrpd2.b φ B = Base G
isgrpd2.p φ + ˙ = + G
isgrpd2.z φ 0 ˙ = 0 G
isgrpd2.g φ G Mnd
isgrpd2e.n φ x B y B y + ˙ x = 0 ˙
Assertion isgrpd2e φ G Grp

Proof

Step Hyp Ref Expression
1 isgrpd2.b φ B = Base G
2 isgrpd2.p φ + ˙ = + G
3 isgrpd2.z φ 0 ˙ = 0 G
4 isgrpd2.g φ G Mnd
5 isgrpd2e.n φ x B y B y + ˙ x = 0 ˙
6 5 ralrimiva φ x B y B y + ˙ x = 0 ˙
7 2 oveqd φ y + ˙ x = y + G x
8 7 3 eqeq12d φ y + ˙ x = 0 ˙ y + G x = 0 G
9 1 8 rexeqbidv φ y B y + ˙ x = 0 ˙ y Base G y + G x = 0 G
10 1 9 raleqbidv φ x B y B y + ˙ x = 0 ˙ x Base G y Base G y + G x = 0 G
11 6 10 mpbid φ x Base G y Base G y + G x = 0 G
12 eqid Base G = Base G
13 eqid + G = + G
14 eqid 0 G = 0 G
15 12 13 14 isgrp G Grp G Mnd x Base G y Base G y + G x = 0 G
16 4 11 15 sylanbrc φ G Grp