Metamath Proof Explorer


Theorem isgrpde

Description: Deduce a group from its properties. In this version of isgrpd , we don't assume there is an expression for the inverse of x . (Contributed by NM, 6-Jan-2015)

Ref Expression
Hypotheses isgrpd.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
isgrpd.p ( 𝜑+ = ( +g𝐺 ) )
isgrpd.c ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
isgrpd.a ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
isgrpd.z ( 𝜑0𝐵 )
isgrpd.i ( ( 𝜑𝑥𝐵 ) → ( 0 + 𝑥 ) = 𝑥 )
isgrpde.n ( ( 𝜑𝑥𝐵 ) → ∃ 𝑦𝐵 ( 𝑦 + 𝑥 ) = 0 )
Assertion isgrpde ( 𝜑𝐺 ∈ Grp )

Proof

Step Hyp Ref Expression
1 isgrpd.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
2 isgrpd.p ( 𝜑+ = ( +g𝐺 ) )
3 isgrpd.c ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
4 isgrpd.a ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
5 isgrpd.z ( 𝜑0𝐵 )
6 isgrpd.i ( ( 𝜑𝑥𝐵 ) → ( 0 + 𝑥 ) = 𝑥 )
7 isgrpde.n ( ( 𝜑𝑥𝐵 ) → ∃ 𝑦𝐵 ( 𝑦 + 𝑥 ) = 0 )
8 3 5 6 4 7 grpridd ( ( 𝜑𝑥𝐵 ) → ( 𝑥 + 0 ) = 𝑥 )
9 1 2 5 6 8 grpidd ( 𝜑0 = ( 0g𝐺 ) )
10 1 2 3 4 5 6 8 ismndd ( 𝜑𝐺 ∈ Mnd )
11 1 2 9 10 7 isgrpd2e ( 𝜑𝐺 ∈ Grp )