Metamath Proof Explorer


Theorem isgrpi

Description: Properties that determine a group. N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 3-Sep-2011)

Ref Expression
Hypotheses isgrpi.b B = Base G
isgrpi.p + ˙ = + G
isgrpi.c x B y B x + ˙ y B
isgrpi.a x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
isgrpi.z 0 ˙ B
isgrpi.i x B 0 ˙ + ˙ x = x
isgrpi.n x B N B
isgrpi.j x B N + ˙ x = 0 ˙
Assertion isgrpi G Grp

Proof

Step Hyp Ref Expression
1 isgrpi.b B = Base G
2 isgrpi.p + ˙ = + G
3 isgrpi.c x B y B x + ˙ y B
4 isgrpi.a x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
5 isgrpi.z 0 ˙ B
6 isgrpi.i x B 0 ˙ + ˙ x = x
7 isgrpi.n x B N B
8 isgrpi.j x B N + ˙ x = 0 ˙
9 1 a1i B = Base G
10 2 a1i + ˙ = + G
11 3 3adant1 x B y B x + ˙ y B
12 4 adantl x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
13 5 a1i 0 ˙ B
14 6 adantl x B 0 ˙ + ˙ x = x
15 7 adantl x B N B
16 8 adantl x B N + ˙ x = 0 ˙
17 9 10 11 12 13 14 15 16 isgrpd G Grp
18 17 mptru G Grp