| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isgrpi.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							isgrpi.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							isgrpi.c | 
							⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							isgrpi.a | 
							⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							isgrpi.z | 
							⊢  0   ∈  𝐵  | 
						
						
							| 6 | 
							
								
							 | 
							isgrpi.i | 
							⊢ ( 𝑥  ∈  𝐵  →  (  0   +  𝑥 )  =  𝑥 )  | 
						
						
							| 7 | 
							
								
							 | 
							isgrpi.n | 
							⊢ ( 𝑥  ∈  𝐵  →  𝑁  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							isgrpi.j | 
							⊢ ( 𝑥  ∈  𝐵  →  ( 𝑁  +  𝑥 )  =   0  )  | 
						
						
							| 9 | 
							
								1
							 | 
							a1i | 
							⊢ ( ⊤  →  𝐵  =  ( Base ‘ 𝐺 ) )  | 
						
						
							| 10 | 
							
								2
							 | 
							a1i | 
							⊢ ( ⊤  →   +   =  ( +g ‘ 𝐺 ) )  | 
						
						
							| 11 | 
							
								3
							 | 
							3adant1 | 
							⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) )  | 
						
						
							| 13 | 
							
								5
							 | 
							a1i | 
							⊢ ( ⊤  →   0   ∈  𝐵 )  | 
						
						
							| 14 | 
							
								6
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵 )  →  (  0   +  𝑥 )  =  𝑥 )  | 
						
						
							| 15 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵 )  →  𝑁  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								8
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵 )  →  ( 𝑁  +  𝑥 )  =   0  )  | 
						
						
							| 17 | 
							
								9 10 11 12 13 14 15 16
							 | 
							isgrpd | 
							⊢ ( ⊤  →  𝐺  ∈  Grp )  | 
						
						
							| 18 | 
							
								17
							 | 
							mptru | 
							⊢ 𝐺  ∈  Grp  |