Metamath Proof Explorer


Theorem symgcl

Description: The group operation of the symmetric group on A is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by Mario Carneiro, 28-Jan-2015)

Ref Expression
Hypotheses symgov.1 G=SymGrpA
symgov.2 B=BaseG
symgov.3 +˙=+G
Assertion symgcl XBYBX+˙YB

Proof

Step Hyp Ref Expression
1 symgov.1 G=SymGrpA
2 symgov.2 B=BaseG
3 symgov.3 +˙=+G
4 1 2 3 symgov XBYBX+˙Y=XY
5 1 2 symgbasf1o XBX:A1-1 ontoA
6 1 2 symgbasf1o YBY:A1-1 ontoA
7 f1oco X:A1-1 ontoAY:A1-1 ontoAXY:A1-1 ontoA
8 5 6 7 syl2an XBYBXY:A1-1 ontoA
9 coexg XBYBXYV
10 1 2 elsymgbas2 XYVXYBXY:A1-1 ontoA
11 9 10 syl XBYBXYBXY:A1-1 ontoA
12 8 11 mpbird XBYBXYB
13 4 12 eqeltrd XBYBX+˙YB