Metamath Proof Explorer


Theorem symgcl

Description: The group operation of the symmetric group on A is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by Mario Carneiro, 28-Jan-2015)

Ref Expression
Hypotheses symgov.1 𝐺 = ( SymGrp ‘ 𝐴 )
symgov.2 𝐵 = ( Base ‘ 𝐺 )
symgov.3 + = ( +g𝐺 )
Assertion symgcl ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 symgov.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symgov.2 𝐵 = ( Base ‘ 𝐺 )
3 symgov.3 + = ( +g𝐺 )
4 1 2 3 symgov ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋𝑌 ) )
5 1 2 symgbasf1o ( 𝑋𝐵𝑋 : 𝐴1-1-onto𝐴 )
6 1 2 symgbasf1o ( 𝑌𝐵𝑌 : 𝐴1-1-onto𝐴 )
7 f1oco ( ( 𝑋 : 𝐴1-1-onto𝐴𝑌 : 𝐴1-1-onto𝐴 ) → ( 𝑋𝑌 ) : 𝐴1-1-onto𝐴 )
8 5 6 7 syl2an ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝑌 ) : 𝐴1-1-onto𝐴 )
9 coexg ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝑌 ) ∈ V )
10 1 2 elsymgbas2 ( ( 𝑋𝑌 ) ∈ V → ( ( 𝑋𝑌 ) ∈ 𝐵 ↔ ( 𝑋𝑌 ) : 𝐴1-1-onto𝐴 ) )
11 9 10 syl ( ( 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋𝑌 ) ∈ 𝐵 ↔ ( 𝑋𝑌 ) : 𝐴1-1-onto𝐴 ) )
12 8 11 mpbird ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝑌 ) ∈ 𝐵 )
13 4 12 eqeltrd ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )