Metamath Proof Explorer


Theorem elsymgbas

Description: Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015)

Ref Expression
Hypotheses symgbas.1 G=SymGrpA
symgbas.2 B=BaseG
Assertion elsymgbas AVFBF:A1-1 ontoA

Proof

Step Hyp Ref Expression
1 symgbas.1 G=SymGrpA
2 symgbas.2 B=BaseG
3 elex FBFV
4 3 a1i AVFBFV
5 f1of F:A1-1 ontoAF:AA
6 fex F:AAAVFV
7 6 expcom AVF:AAFV
8 5 7 syl5 AVF:A1-1 ontoAFV
9 1 2 elsymgbas2 FVFBF:A1-1 ontoA
10 9 a1i AVFVFBF:A1-1 ontoA
11 4 8 10 pm5.21ndd AVFBF:A1-1 ontoA