Step |
Hyp |
Ref |
Expression |
1 |
|
psgnuni.g |
|
2 |
|
psgnuni.t |
|
3 |
|
psgnuni.d |
|
4 |
|
psgnuni.w |
|
5 |
|
psgnuni.x |
|
6 |
|
psgnuni.e |
|
7 |
|
lencl |
|
8 |
4 7
|
syl |
|
9 |
8
|
nn0zd |
|
10 |
|
m1expcl |
|
11 |
9 10
|
syl |
|
12 |
11
|
zcnd |
|
13 |
|
lencl |
|
14 |
5 13
|
syl |
|
15 |
14
|
nn0zd |
|
16 |
|
m1expcl |
|
17 |
15 16
|
syl |
|
18 |
17
|
zcnd |
|
19 |
|
neg1cn |
|
20 |
|
neg1ne0 |
|
21 |
|
expne0i |
|
22 |
19 20 15 21
|
mp3an12i |
|
23 |
|
m1expaddsub |
|
24 |
9 15 23
|
syl2anc |
|
25 |
|
expsub |
|
26 |
19 20 25
|
mpanl12 |
|
27 |
9 15 26
|
syl2anc |
|
28 |
|
revcl |
|
29 |
5 28
|
syl |
|
30 |
|
ccatlen |
|
31 |
4 29 30
|
syl2anc |
|
32 |
|
revlen |
|
33 |
5 32
|
syl |
|
34 |
33
|
oveq2d |
|
35 |
31 34
|
eqtr2d |
|
36 |
35
|
oveq2d |
|
37 |
|
ccatcl |
|
38 |
4 29 37
|
syl2anc |
|
39 |
6
|
fveq2d |
|
40 |
|
eqid |
|
41 |
2 1 40
|
symgtrinv |
|
42 |
3 5 41
|
syl2anc |
|
43 |
39 42
|
eqtr2d |
|
44 |
43
|
oveq2d |
|
45 |
1
|
symggrp |
|
46 |
3 45
|
syl |
|
47 |
|
grpmnd |
|
48 |
3 45 47
|
3syl |
|
49 |
|
eqid |
|
50 |
2 1 49
|
symgtrf |
|
51 |
|
sswrd |
|
52 |
50 51
|
ax-mp |
|
53 |
52 4
|
sselid |
|
54 |
49
|
gsumwcl |
|
55 |
48 53 54
|
syl2anc |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
49 56 57 40
|
grprinv |
|
59 |
46 55 58
|
syl2anc |
|
60 |
44 59
|
eqtrd |
|
61 |
52 29
|
sselid |
|
62 |
49 56
|
gsumccat |
|
63 |
48 53 61 62
|
syl3anc |
|
64 |
1
|
symgid |
|
65 |
3 64
|
syl |
|
66 |
60 63 65
|
3eqtr4d |
|
67 |
1 2 3 38 66
|
psgnunilem4 |
|
68 |
36 67
|
eqtrd |
|
69 |
24 27 68
|
3eqtr3d |
|
70 |
12 18 22 69
|
diveq1d |
|