| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumccat.b |
|
| 2 |
|
gsumccat.p |
|
| 3 |
|
oveq1 |
|
| 4 |
3
|
oveq2d |
|
| 5 |
|
oveq2 |
|
| 6 |
|
eqid |
|
| 7 |
6
|
gsum0 |
|
| 8 |
5 7
|
eqtrdi |
|
| 9 |
8
|
oveq1d |
|
| 10 |
4 9
|
eqeq12d |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
oveq2 |
|
| 14 |
13 7
|
eqtrdi |
|
| 15 |
14
|
oveq2d |
|
| 16 |
12 15
|
eqeq12d |
|
| 17 |
|
mndsgrp |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
3simpc |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
simpr |
|
| 23 |
22
|
anim1i |
|
| 24 |
1 2
|
gsumsgrpccat |
|
| 25 |
19 21 23 24
|
syl3anc |
|
| 26 |
|
simpl2 |
|
| 27 |
|
ccatrid |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
oveq2d |
|
| 30 |
|
simpl1 |
|
| 31 |
1
|
gsumwcl |
|
| 32 |
31
|
3adant3 |
|
| 33 |
32
|
adantr |
|
| 34 |
1 2 6
|
mndrid |
|
| 35 |
30 33 34
|
syl2anc |
|
| 36 |
29 35
|
eqtr4d |
|
| 37 |
16 25 36
|
pm2.61ne |
|
| 38 |
|
ccatlid |
|
| 39 |
38
|
3ad2ant3 |
|
| 40 |
39
|
oveq2d |
|
| 41 |
|
simp1 |
|
| 42 |
1
|
gsumwcl |
|
| 43 |
1 2 6
|
mndlid |
|
| 44 |
41 42 43
|
3imp3i2an |
|
| 45 |
40 44
|
eqtr4d |
|
| 46 |
10 37 45
|
pm2.61ne |
|