Metamath Proof Explorer


Theorem gsumws2

Description: Valuation of a pair in a monoid. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses gsumccat.b B=BaseG
gsumccat.p +˙=+G
Assertion gsumws2 GMndSBTBG⟨“ST”⟩=S+˙T

Proof

Step Hyp Ref Expression
1 gsumccat.b B=BaseG
2 gsumccat.p +˙=+G
3 df-s2 ⟨“ST”⟩=⟨“S”⟩++⟨“T”⟩
4 3 a1i GMndSBTB⟨“ST”⟩=⟨“S”⟩++⟨“T”⟩
5 4 oveq2d GMndSBTBG⟨“ST”⟩=G⟨“S”⟩++⟨“T”⟩
6 id GMndGMnd
7 s1cl SB⟨“S”⟩WordB
8 s1cl TB⟨“T”⟩WordB
9 1 2 gsumccat GMnd⟨“S”⟩WordB⟨“T”⟩WordBG⟨“S”⟩++⟨“T”⟩=G⟨“S”⟩+˙G⟨“T”⟩
10 6 7 8 9 syl3an GMndSBTBG⟨“S”⟩++⟨“T”⟩=G⟨“S”⟩+˙G⟨“T”⟩
11 1 gsumws1 SBG⟨“S”⟩=S
12 1 gsumws1 TBG⟨“T”⟩=T
13 11 12 oveqan12d SBTBG⟨“S”⟩+˙G⟨“T”⟩=S+˙T
14 13 3adant1 GMndSBTBG⟨“S”⟩+˙G⟨“T”⟩=S+˙T
15 5 10 14 3eqtrd GMndSBTBG⟨“ST”⟩=S+˙T