Metamath Proof Explorer


Theorem gsumccatsn

Description: Homomorphic property of composites with a singleton. (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsumccat.b B=BaseG
gsumccat.p +˙=+G
Assertion gsumccatsn GMndWWordBZBGW++⟨“Z”⟩=GW+˙Z

Proof

Step Hyp Ref Expression
1 gsumccat.b B=BaseG
2 gsumccat.p +˙=+G
3 s1cl ZB⟨“Z”⟩WordB
4 1 2 gsumccat GMndWWordB⟨“Z”⟩WordBGW++⟨“Z”⟩=GW+˙G⟨“Z”⟩
5 3 4 syl3an3 GMndWWordBZBGW++⟨“Z”⟩=GW+˙G⟨“Z”⟩
6 1 gsumws1 ZBG⟨“Z”⟩=Z
7 6 3ad2ant3 GMndWWordBZBG⟨“Z”⟩=Z
8 7 oveq2d GMndWWordBZBGW+˙G⟨“Z”⟩=GW+˙Z
9 5 8 eqtrd GMndWWordBZBGW++⟨“Z”⟩=GW+˙Z