Metamath Proof Explorer


Theorem gsumws1

Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis gsumwcl.b B=BaseG
Assertion gsumws1 SBG⟨“S”⟩=S

Proof

Step Hyp Ref Expression
1 gsumwcl.b B=BaseG
2 s1val SB⟨“S”⟩=0S
3 2 oveq2d SBG⟨“S”⟩=G0S
4 eqid +G=+G
5 elfvdm SBaseGGdomBase
6 5 1 eleq2s SBGdomBase
7 0nn0 00
8 nn0uz 0=0
9 7 8 eleqtri 00
10 9 a1i SB00
11 0z 0
12 f1osng 0SB0S:01-1 ontoS
13 11 12 mpan SB0S:01-1 ontoS
14 f1of 0S:01-1 ontoS0S:0S
15 13 14 syl SB0S:0S
16 snssi SBSB
17 15 16 fssd SB0S:0B
18 fz0sn 00=0
19 18 feq2i 0S:00B0S:0B
20 17 19 sylibr SB0S:00B
21 1 4 6 10 20 gsumval2 SBG0S=seq0+G0S0
22 fvsng 0SB0S0=S
23 11 22 mpan SB0S0=S
24 11 23 seq1i SBseq0+G0S0=S
25 3 21 24 3eqtrd SBG⟨“S”⟩=S