Metamath Proof Explorer


Theorem gsumspl

Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Hypotheses gsumspl.b B=BaseM
gsumspl.m φMMnd
gsumspl.s φSWordB
gsumspl.f φF0T
gsumspl.t φT0S
gsumspl.x φXWordB
gsumspl.y φYWordB
gsumspl.eq φMX=MY
Assertion gsumspl φMSspliceFTX=MSspliceFTY

Proof

Step Hyp Ref Expression
1 gsumspl.b B=BaseM
2 gsumspl.m φMMnd
3 gsumspl.s φSWordB
4 gsumspl.f φF0T
5 gsumspl.t φT0S
6 gsumspl.x φXWordB
7 gsumspl.y φYWordB
8 gsumspl.eq φMX=MY
9 8 oveq2d φMSprefixF+MMX=MSprefixF+MMY
10 9 oveq1d φMSprefixF+MMX+MMSsubstrTS=MSprefixF+MMY+MMSsubstrTS
11 splval SWordBF0TT0SXWordBSspliceFTX=SprefixF++X++SsubstrTS
12 3 4 5 6 11 syl13anc φSspliceFTX=SprefixF++X++SsubstrTS
13 12 oveq2d φMSspliceFTX=MSprefixF++X++SsubstrTS
14 pfxcl SWordBSprefixFWordB
15 3 14 syl φSprefixFWordB
16 ccatcl SprefixFWordBXWordBSprefixF++XWordB
17 15 6 16 syl2anc φSprefixF++XWordB
18 swrdcl SWordBSsubstrTSWordB
19 3 18 syl φSsubstrTSWordB
20 eqid +M=+M
21 1 20 gsumccat MMndSprefixF++XWordBSsubstrTSWordBMSprefixF++X++SsubstrTS=MSprefixF++X+MMSsubstrTS
22 2 17 19 21 syl3anc φMSprefixF++X++SsubstrTS=MSprefixF++X+MMSsubstrTS
23 1 20 gsumccat MMndSprefixFWordBXWordBMSprefixF++X=MSprefixF+MMX
24 2 15 6 23 syl3anc φMSprefixF++X=MSprefixF+MMX
25 24 oveq1d φMSprefixF++X+MMSsubstrTS=MSprefixF+MMX+MMSsubstrTS
26 13 22 25 3eqtrd φMSspliceFTX=MSprefixF+MMX+MMSsubstrTS
27 splval SWordBF0TT0SYWordBSspliceFTY=SprefixF++Y++SsubstrTS
28 3 4 5 7 27 syl13anc φSspliceFTY=SprefixF++Y++SsubstrTS
29 28 oveq2d φMSspliceFTY=MSprefixF++Y++SsubstrTS
30 ccatcl SprefixFWordBYWordBSprefixF++YWordB
31 15 7 30 syl2anc φSprefixF++YWordB
32 1 20 gsumccat MMndSprefixF++YWordBSsubstrTSWordBMSprefixF++Y++SsubstrTS=MSprefixF++Y+MMSsubstrTS
33 2 31 19 32 syl3anc φMSprefixF++Y++SsubstrTS=MSprefixF++Y+MMSsubstrTS
34 1 20 gsumccat MMndSprefixFWordBYWordBMSprefixF++Y=MSprefixF+MMY
35 2 15 7 34 syl3anc φMSprefixF++Y=MSprefixF+MMY
36 35 oveq1d φMSprefixF++Y+MMSsubstrTS=MSprefixF+MMY+MMSsubstrTS
37 29 33 36 3eqtrd φMSspliceFTY=MSprefixF+MMY+MMSsubstrTS
38 10 26 37 3eqtr4d φMSspliceFTX=MSspliceFTY