Metamath Proof Explorer


Theorem ccatrid

Description: Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion ccatrid SWordBS++=S

Proof

Step Hyp Ref Expression
1 wrd0 WordB
2 ccatvalfn SWordBWordBS++Fn0..^S+
3 1 2 mpan2 SWordBS++Fn0..^S+
4 hash0 =0
5 4 oveq2i S+=S+0
6 lencl SWordBS0
7 6 nn0cnd SWordBS
8 7 addridd SWordBS+0=S
9 5 8 eqtr2id SWordBS=S+
10 9 oveq2d SWordB0..^S=0..^S+
11 10 fneq2d SWordBS++Fn0..^SS++Fn0..^S+
12 3 11 mpbird SWordBS++Fn0..^S
13 wrdfn SWordBSFn0..^S
14 ccatval1 SWordBWordBx0..^SS++x=Sx
15 1 14 mp3an2 SWordBx0..^SS++x=Sx
16 12 13 15 eqfnfvd SWordBS++=S