| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumwcl.b |  | 
						
							| 2 |  | gsumsgrpccat.p |  | 
						
							| 3 |  | simp1 |  | 
						
							| 4 |  | sgrpmgm |  | 
						
							| 5 | 1 2 | mgmcl |  | 
						
							| 6 | 4 5 | syl3an1 |  | 
						
							| 7 | 6 | 3expb |  | 
						
							| 8 | 3 7 | sylan |  | 
						
							| 9 | 1 2 | sgrpass |  | 
						
							| 10 | 3 9 | sylan |  | 
						
							| 11 |  | lennncl |  | 
						
							| 12 | 11 | ad2ant2r |  | 
						
							| 13 | 12 | 3adant1 |  | 
						
							| 14 | 13 | nnzd |  | 
						
							| 15 | 14 | uzidd |  | 
						
							| 16 |  | lennncl |  | 
						
							| 17 | 16 | ad2ant2l |  | 
						
							| 18 | 17 | 3adant1 |  | 
						
							| 19 |  | nnm1nn0 |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | uzaddcl |  | 
						
							| 22 | 15 20 21 | syl2anc |  | 
						
							| 23 | 13 | nncnd |  | 
						
							| 24 | 18 | nncnd |  | 
						
							| 25 |  | 1cnd |  | 
						
							| 26 | 23 24 25 | addsubassd |  | 
						
							| 27 |  | ax-1cn |  | 
						
							| 28 |  | npcan |  | 
						
							| 29 | 23 27 28 | sylancl |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 22 26 30 | 3eltr4d |  | 
						
							| 32 |  | nnm1nn0 |  | 
						
							| 33 | 13 32 | syl |  | 
						
							| 34 |  | nn0uz |  | 
						
							| 35 | 33 34 | eleqtrdi |  | 
						
							| 36 |  | ccatcl |  | 
						
							| 37 | 36 | 3ad2ant2 |  | 
						
							| 38 |  | wrdf |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 |  | ccatlen |  | 
						
							| 41 | 40 | 3ad2ant2 |  | 
						
							| 42 | 41 | oveq2d |  | 
						
							| 43 | 18 | nnzd |  | 
						
							| 44 | 14 43 | zaddcld |  | 
						
							| 45 |  | fzoval |  | 
						
							| 46 | 44 45 | syl |  | 
						
							| 47 | 42 46 | eqtrd |  | 
						
							| 48 | 47 | feq2d |  | 
						
							| 49 | 39 48 | mpbid |  | 
						
							| 50 | 49 | ffvelcdmda |  | 
						
							| 51 | 8 10 31 35 50 | seqsplit |  | 
						
							| 52 |  | simpl2l |  | 
						
							| 53 |  | simpl2r |  | 
						
							| 54 |  | fzoval |  | 
						
							| 55 | 14 54 | syl |  | 
						
							| 56 | 55 | eleq2d |  | 
						
							| 57 | 56 | biimpar |  | 
						
							| 58 |  | ccatval1 |  | 
						
							| 59 | 52 53 57 58 | syl3anc |  | 
						
							| 60 | 35 59 | seqfveq |  | 
						
							| 61 | 23 | addlidd |  | 
						
							| 62 | 29 61 | eqtr4d |  | 
						
							| 63 | 62 | seqeq1d |  | 
						
							| 64 | 23 24 | addcomd |  | 
						
							| 65 | 64 | oveq1d |  | 
						
							| 66 | 24 23 25 | addsubd |  | 
						
							| 67 | 65 66 | eqtrd |  | 
						
							| 68 | 63 67 | fveq12d |  | 
						
							| 69 | 20 34 | eleqtrdi |  | 
						
							| 70 |  | simpl2l |  | 
						
							| 71 |  | simpl2r |  | 
						
							| 72 |  | fzoval |  | 
						
							| 73 | 43 72 | syl |  | 
						
							| 74 | 73 | eleq2d |  | 
						
							| 75 | 74 | biimpar |  | 
						
							| 76 |  | ccatval3 |  | 
						
							| 77 | 70 71 75 76 | syl3anc |  | 
						
							| 78 | 77 | eqcomd |  | 
						
							| 79 | 69 14 78 | seqshft2 |  | 
						
							| 80 | 68 79 | eqtr4d |  | 
						
							| 81 | 60 80 | oveq12d |  | 
						
							| 82 | 51 81 | eqtrd |  | 
						
							| 83 | 13 18 | nnaddcld |  | 
						
							| 84 |  | nnm1nn0 |  | 
						
							| 85 | 83 84 | syl |  | 
						
							| 86 | 85 34 | eleqtrdi |  | 
						
							| 87 | 1 2 3 86 49 | gsumval2 |  | 
						
							| 88 |  | simp2l |  | 
						
							| 89 |  | wrdf |  | 
						
							| 90 | 88 89 | syl |  | 
						
							| 91 | 55 | feq2d |  | 
						
							| 92 | 90 91 | mpbid |  | 
						
							| 93 | 1 2 3 35 92 | gsumval2 |  | 
						
							| 94 |  | simp2r |  | 
						
							| 95 |  | wrdf |  | 
						
							| 96 | 94 95 | syl |  | 
						
							| 97 | 73 | feq2d |  | 
						
							| 98 | 96 97 | mpbid |  | 
						
							| 99 | 1 2 3 69 98 | gsumval2 |  | 
						
							| 100 | 93 99 | oveq12d |  | 
						
							| 101 | 82 87 100 | 3eqtr4d |  |