| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnuni.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | psgnuni.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 3 |  | psgnuni.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | psgnuni.w | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑇 ) | 
						
							| 5 |  | psgnuni.x | ⊢ ( 𝜑  →  𝑋  ∈  Word  𝑇 ) | 
						
							| 6 |  | psgnuni.e | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝑊 )  =  ( 𝐺  Σg  𝑋 ) ) | 
						
							| 7 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑇  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 10 |  | m1expcl | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℤ  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  ∈  ℤ ) | 
						
							| 12 | 11 | zcnd | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 13 |  | lencl | ⊢ ( 𝑋  ∈  Word  𝑇  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℤ ) | 
						
							| 16 |  | m1expcl | ⊢ ( ( ♯ ‘ 𝑋 )  ∈  ℤ  →  ( - 1 ↑ ( ♯ ‘ 𝑋 ) )  ∈  ℤ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ 𝑋 ) )  ∈  ℤ ) | 
						
							| 18 | 17 | zcnd | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 19 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 20 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 21 |  | expne0i | ⊢ ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0  ∧  ( ♯ ‘ 𝑋 )  ∈  ℤ )  →  ( - 1 ↑ ( ♯ ‘ 𝑋 ) )  ≠  0 ) | 
						
							| 22 | 19 20 15 21 | mp3an12i | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ 𝑋 ) )  ≠  0 ) | 
						
							| 23 |  | m1expaddsub | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℤ )  →  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑋 ) ) )  =  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 24 | 9 15 23 | syl2anc | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑋 ) ) )  =  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 25 |  | expsub | ⊢ ( ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0 )  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℤ ) )  →  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑋 ) ) )  =  ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  /  ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 26 | 19 20 25 | mpanl12 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℤ )  →  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑋 ) ) )  =  ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  /  ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 27 | 9 15 26 | syl2anc | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑋 ) ) )  =  ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  /  ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 28 |  | revcl | ⊢ ( 𝑋  ∈  Word  𝑇  →  ( reverse ‘ 𝑋 )  ∈  Word  𝑇 ) | 
						
							| 29 | 5 28 | syl | ⊢ ( 𝜑  →  ( reverse ‘ 𝑋 )  ∈  Word  𝑇 ) | 
						
							| 30 |  | ccatlen | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  ( reverse ‘ 𝑋 )  ∈  Word  𝑇 )  →  ( ♯ ‘ ( 𝑊  ++  ( reverse ‘ 𝑋 ) ) )  =  ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ ( reverse ‘ 𝑋 ) ) ) ) | 
						
							| 31 | 4 29 30 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  ++  ( reverse ‘ 𝑋 ) ) )  =  ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ ( reverse ‘ 𝑋 ) ) ) ) | 
						
							| 32 |  | revlen | ⊢ ( 𝑋  ∈  Word  𝑇  →  ( ♯ ‘ ( reverse ‘ 𝑋 ) )  =  ( ♯ ‘ 𝑋 ) ) | 
						
							| 33 | 5 32 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( reverse ‘ 𝑋 ) )  =  ( ♯ ‘ 𝑋 ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ ( reverse ‘ 𝑋 ) ) )  =  ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 35 | 31 34 | eqtr2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 𝑋 ) )  =  ( ♯ ‘ ( 𝑊  ++  ( reverse ‘ 𝑋 ) ) ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 𝑋 ) ) )  =  ( - 1 ↑ ( ♯ ‘ ( 𝑊  ++  ( reverse ‘ 𝑋 ) ) ) ) ) | 
						
							| 37 |  | ccatcl | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  ( reverse ‘ 𝑋 )  ∈  Word  𝑇 )  →  ( 𝑊  ++  ( reverse ‘ 𝑋 ) )  ∈  Word  𝑇 ) | 
						
							| 38 | 4 29 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  ++  ( reverse ‘ 𝑋 ) )  ∈  Word  𝑇 ) | 
						
							| 39 | 6 | fveq2d | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝑊 ) )  =  ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝑋 ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 41 | 2 1 40 | symgtrinv | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑋  ∈  Word  𝑇 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝑋 ) )  =  ( 𝐺  Σg  ( reverse ‘ 𝑋 ) ) ) | 
						
							| 42 | 3 5 41 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝑋 ) )  =  ( 𝐺  Σg  ( reverse ‘ 𝑋 ) ) ) | 
						
							| 43 | 39 42 | eqtr2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( reverse ‘ 𝑋 ) )  =  ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝑊 ) ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( reverse ‘ 𝑋 ) ) )  =  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝑊 ) ) ) ) | 
						
							| 45 | 1 | symggrp | ⊢ ( 𝐷  ∈  𝑉  →  𝐺  ∈  Grp ) | 
						
							| 46 | 3 45 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 47 |  | grpmnd | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd ) | 
						
							| 48 | 3 45 47 | 3syl | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 49 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 50 | 2 1 49 | symgtrf | ⊢ 𝑇  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 51 |  | sswrd | ⊢ ( 𝑇  ⊆  ( Base ‘ 𝐺 )  →  Word  𝑇  ⊆  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ Word  𝑇  ⊆  Word  ( Base ‘ 𝐺 ) | 
						
							| 53 | 52 4 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 54 | 49 | gsumwcl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑊  ∈  Word  ( Base ‘ 𝐺 ) )  →  ( 𝐺  Σg  𝑊 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 55 | 48 53 54 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝑊 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 57 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 58 | 49 56 57 40 | grprinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐺  Σg  𝑊 )  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝑊 ) ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 59 | 46 55 58 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝑊 ) ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 60 | 44 59 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( reverse ‘ 𝑋 ) ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 61 | 52 29 | sselid | ⊢ ( 𝜑  →  ( reverse ‘ 𝑋 )  ∈  Word  ( Base ‘ 𝐺 ) ) | 
						
							| 62 | 49 56 | gsumccat | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑊  ∈  Word  ( Base ‘ 𝐺 )  ∧  ( reverse ‘ 𝑋 )  ∈  Word  ( Base ‘ 𝐺 ) )  →  ( 𝐺  Σg  ( 𝑊  ++  ( reverse ‘ 𝑋 ) ) )  =  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( reverse ‘ 𝑋 ) ) ) ) | 
						
							| 63 | 48 53 61 62 | syl3anc | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑊  ++  ( reverse ‘ 𝑋 ) ) )  =  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( reverse ‘ 𝑋 ) ) ) ) | 
						
							| 64 | 1 | symgid | ⊢ ( 𝐷  ∈  𝑉  →  (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 65 | 3 64 | syl | ⊢ ( 𝜑  →  (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 66 | 60 63 65 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑊  ++  ( reverse ‘ 𝑋 ) ) )  =  (  I   ↾  𝐷 ) ) | 
						
							| 67 | 1 2 3 38 66 | psgnunilem4 | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ ( 𝑊  ++  ( reverse ‘ 𝑋 ) ) ) )  =  1 ) | 
						
							| 68 | 36 67 | eqtrd | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 𝑋 ) ) )  =  1 ) | 
						
							| 69 | 24 27 68 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  /  ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) )  =  1 ) | 
						
							| 70 | 12 18 22 69 | diveq1d | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑋 ) ) ) |