Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1expcl | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1z | ⊢ - 1 ∈ ℤ | |
| 2 | 1z | ⊢ 1 ∈ ℤ | |
| 3 | prssi | ⊢ ( ( - 1 ∈ ℤ ∧ 1 ∈ ℤ ) → { - 1 , 1 } ⊆ ℤ ) | |
| 4 | 1 2 3 | mp2an | ⊢ { - 1 , 1 } ⊆ ℤ |
| 5 | m1expcl2 | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } ) | |
| 6 | 4 5 | sselid | ⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ ℤ ) |