| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfval.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | psgnfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | psgnfval.f | ⊢ 𝐹  =  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 4 |  | psgnfval.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 5 |  | psgnfval.n | ⊢ 𝑁  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑑  =  𝐷  →  ( SymGrp ‘ 𝑑 )  =  ( SymGrp ‘ 𝐷 ) ) | 
						
							| 7 | 6 1 | eqtr4di | ⊢ ( 𝑑  =  𝐷  →  ( SymGrp ‘ 𝑑 )  =  𝐺 ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑑  =  𝐷  →  ( Base ‘ ( SymGrp ‘ 𝑑 ) )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 9 | 8 2 | eqtr4di | ⊢ ( 𝑑  =  𝐷  →  ( Base ‘ ( SymGrp ‘ 𝑑 ) )  =  𝐵 ) | 
						
							| 10 |  | rabeq | ⊢ ( ( Base ‘ ( SymGrp ‘ 𝑑 ) )  =  𝐵  →  { 𝑝  ∈  ( Base ‘ ( SymGrp ‘ 𝑑 ) )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑑  =  𝐷  →  { 𝑝  ∈  ( Base ‘ ( SymGrp ‘ 𝑑 ) )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } ) | 
						
							| 12 | 11 3 | eqtr4di | ⊢ ( 𝑑  =  𝐷  →  { 𝑝  ∈  ( Base ‘ ( SymGrp ‘ 𝑑 ) )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  𝐹 ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑑  =  𝐷  →  ( pmTrsp ‘ 𝑑 )  =  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 14 | 13 | rneqd | ⊢ ( 𝑑  =  𝐷  →  ran  ( pmTrsp ‘ 𝑑 )  =  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 15 | 14 4 | eqtr4di | ⊢ ( 𝑑  =  𝐷  →  ran  ( pmTrsp ‘ 𝑑 )  =  𝑇 ) | 
						
							| 16 |  | wrdeq | ⊢ ( ran  ( pmTrsp ‘ 𝑑 )  =  𝑇  →  Word  ran  ( pmTrsp ‘ 𝑑 )  =  Word  𝑇 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝑑  =  𝐷  →  Word  ran  ( pmTrsp ‘ 𝑑 )  =  Word  𝑇 ) | 
						
							| 18 | 7 | oveq1d | ⊢ ( 𝑑  =  𝐷  →  ( ( SymGrp ‘ 𝑑 )  Σg  𝑤 )  =  ( 𝐺  Σg  𝑤 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑑  =  𝐷  →  ( 𝑥  =  ( ( SymGrp ‘ 𝑑 )  Σg  𝑤 )  ↔  𝑥  =  ( 𝐺  Σg  𝑤 ) ) ) | 
						
							| 20 | 19 | anbi1d | ⊢ ( 𝑑  =  𝐷  →  ( ( 𝑥  =  ( ( SymGrp ‘ 𝑑 )  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) )  ↔  ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 21 | 17 20 | rexeqbidv | ⊢ ( 𝑑  =  𝐷  →  ( ∃ 𝑤  ∈  Word  ran  ( pmTrsp ‘ 𝑑 ) ( 𝑥  =  ( ( SymGrp ‘ 𝑑 )  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) )  ↔  ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 22 | 21 | iotabidv | ⊢ ( 𝑑  =  𝐷  →  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  ran  ( pmTrsp ‘ 𝑑 ) ( 𝑥  =  ( ( SymGrp ‘ 𝑑 )  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) )  =  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 23 | 12 22 | mpteq12dv | ⊢ ( 𝑑  =  𝐷  →  ( 𝑥  ∈  { 𝑝  ∈  ( Base ‘ ( SymGrp ‘ 𝑑 ) )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  ran  ( pmTrsp ‘ 𝑑 ) ( 𝑥  =  ( ( SymGrp ‘ 𝑑 )  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )  =  ( 𝑥  ∈  𝐹  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 24 |  | df-psgn | ⊢ pmSgn  =  ( 𝑑  ∈  V  ↦  ( 𝑥  ∈  { 𝑝  ∈  ( Base ‘ ( SymGrp ‘ 𝑑 ) )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  ran  ( pmTrsp ‘ 𝑑 ) ( 𝑥  =  ( ( SymGrp ‘ 𝑑 )  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 25 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 26 | 3 25 | rabex2 | ⊢ 𝐹  ∈  V | 
						
							| 27 | 26 | mptex | ⊢ ( 𝑥  ∈  𝐹  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )  ∈  V | 
						
							| 28 | 23 24 27 | fvmpt | ⊢ ( 𝐷  ∈  V  →  ( pmSgn ‘ 𝐷 )  =  ( 𝑥  ∈  𝐹  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 29 |  | fvprc | ⊢ ( ¬  𝐷  ∈  V  →  ( pmSgn ‘ 𝐷 )  =  ∅ ) | 
						
							| 30 |  | fvprc | ⊢ ( ¬  𝐷  ∈  V  →  ( SymGrp ‘ 𝐷 )  =  ∅ ) | 
						
							| 31 | 1 30 | eqtrid | ⊢ ( ¬  𝐷  ∈  V  →  𝐺  =  ∅ ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ¬  𝐷  ∈  V  →  ( Base ‘ 𝐺 )  =  ( Base ‘ ∅ ) ) | 
						
							| 33 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 34 | 32 33 | eqtr4di | ⊢ ( ¬  𝐷  ∈  V  →  ( Base ‘ 𝐺 )  =  ∅ ) | 
						
							| 35 | 2 34 | eqtrid | ⊢ ( ¬  𝐷  ∈  V  →  𝐵  =  ∅ ) | 
						
							| 36 |  | rabeq | ⊢ ( 𝐵  =  ∅  →  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  { 𝑝  ∈  ∅  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ¬  𝐷  ∈  V  →  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  { 𝑝  ∈  ∅  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } ) | 
						
							| 38 |  | rab0 | ⊢ { 𝑝  ∈  ∅  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  ∅ | 
						
							| 39 | 37 38 | eqtrdi | ⊢ ( ¬  𝐷  ∈  V  →  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  ∅ ) | 
						
							| 40 | 3 39 | eqtrid | ⊢ ( ¬  𝐷  ∈  V  →  𝐹  =  ∅ ) | 
						
							| 41 | 40 | mpteq1d | ⊢ ( ¬  𝐷  ∈  V  →  ( 𝑥  ∈  𝐹  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )  =  ( 𝑥  ∈  ∅  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 42 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )  =  ∅ | 
						
							| 43 | 41 42 | eqtrdi | ⊢ ( ¬  𝐷  ∈  V  →  ( 𝑥  ∈  𝐹  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )  =  ∅ ) | 
						
							| 44 | 29 43 | eqtr4d | ⊢ ( ¬  𝐷  ∈  V  →  ( pmSgn ‘ 𝐷 )  =  ( 𝑥  ∈  𝐹  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 45 | 28 44 | pm2.61i | ⊢ ( pmSgn ‘ 𝐷 )  =  ( 𝑥  ∈  𝐹  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 46 | 5 45 | eqtri | ⊢ 𝑁  =  ( 𝑥  ∈  𝐹  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |