| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfval.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnfval.b |  |-  B = ( Base ` G ) | 
						
							| 3 |  | psgnfval.f |  |-  F = { p e. B | dom ( p \ _I ) e. Fin } | 
						
							| 4 |  | psgnfval.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 5 |  | psgnfval.n |  |-  N = ( pmSgn ` D ) | 
						
							| 6 |  | fveq2 |  |-  ( d = D -> ( SymGrp ` d ) = ( SymGrp ` D ) ) | 
						
							| 7 | 6 1 | eqtr4di |  |-  ( d = D -> ( SymGrp ` d ) = G ) | 
						
							| 8 | 7 | fveq2d |  |-  ( d = D -> ( Base ` ( SymGrp ` d ) ) = ( Base ` G ) ) | 
						
							| 9 | 8 2 | eqtr4di |  |-  ( d = D -> ( Base ` ( SymGrp ` d ) ) = B ) | 
						
							| 10 |  | rabeq |  |-  ( ( Base ` ( SymGrp ` d ) ) = B -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } ) | 
						
							| 11 | 9 10 | syl |  |-  ( d = D -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } ) | 
						
							| 12 | 11 3 | eqtr4di |  |-  ( d = D -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = F ) | 
						
							| 13 |  | fveq2 |  |-  ( d = D -> ( pmTrsp ` d ) = ( pmTrsp ` D ) ) | 
						
							| 14 | 13 | rneqd |  |-  ( d = D -> ran ( pmTrsp ` d ) = ran ( pmTrsp ` D ) ) | 
						
							| 15 | 14 4 | eqtr4di |  |-  ( d = D -> ran ( pmTrsp ` d ) = T ) | 
						
							| 16 |  | wrdeq |  |-  ( ran ( pmTrsp ` d ) = T -> Word ran ( pmTrsp ` d ) = Word T ) | 
						
							| 17 | 15 16 | syl |  |-  ( d = D -> Word ran ( pmTrsp ` d ) = Word T ) | 
						
							| 18 | 7 | oveq1d |  |-  ( d = D -> ( ( SymGrp ` d ) gsum w ) = ( G gsum w ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( d = D -> ( x = ( ( SymGrp ` d ) gsum w ) <-> x = ( G gsum w ) ) ) | 
						
							| 20 | 19 | anbi1d |  |-  ( d = D -> ( ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 21 | 17 20 | rexeqbidv |  |-  ( d = D -> ( E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 22 | 21 | iotabidv |  |-  ( d = D -> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 23 | 12 22 | mpteq12dv |  |-  ( d = D -> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) | 
						
							| 24 |  | df-psgn |  |-  pmSgn = ( d e. _V |-> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) | 
						
							| 25 | 2 | fvexi |  |-  B e. _V | 
						
							| 26 | 3 25 | rabex2 |  |-  F e. _V | 
						
							| 27 | 26 | mptex |  |-  ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) e. _V | 
						
							| 28 | 23 24 27 | fvmpt |  |-  ( D e. _V -> ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) | 
						
							| 29 |  | fvprc |  |-  ( -. D e. _V -> ( pmSgn ` D ) = (/) ) | 
						
							| 30 |  | fvprc |  |-  ( -. D e. _V -> ( SymGrp ` D ) = (/) ) | 
						
							| 31 | 1 30 | eqtrid |  |-  ( -. D e. _V -> G = (/) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( -. D e. _V -> ( Base ` G ) = ( Base ` (/) ) ) | 
						
							| 33 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 34 | 32 33 | eqtr4di |  |-  ( -. D e. _V -> ( Base ` G ) = (/) ) | 
						
							| 35 | 2 34 | eqtrid |  |-  ( -. D e. _V -> B = (/) ) | 
						
							| 36 |  | rabeq |  |-  ( B = (/) -> { p e. B | dom ( p \ _I ) e. Fin } = { p e. (/) | dom ( p \ _I ) e. Fin } ) | 
						
							| 37 | 35 36 | syl |  |-  ( -. D e. _V -> { p e. B | dom ( p \ _I ) e. Fin } = { p e. (/) | dom ( p \ _I ) e. Fin } ) | 
						
							| 38 |  | rab0 |  |-  { p e. (/) | dom ( p \ _I ) e. Fin } = (/) | 
						
							| 39 | 37 38 | eqtrdi |  |-  ( -. D e. _V -> { p e. B | dom ( p \ _I ) e. Fin } = (/) ) | 
						
							| 40 | 3 39 | eqtrid |  |-  ( -. D e. _V -> F = (/) ) | 
						
							| 41 | 40 | mpteq1d |  |-  ( -. D e. _V -> ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = ( x e. (/) |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) | 
						
							| 42 |  | mpt0 |  |-  ( x e. (/) |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = (/) | 
						
							| 43 | 41 42 | eqtrdi |  |-  ( -. D e. _V -> ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = (/) ) | 
						
							| 44 | 29 43 | eqtr4d |  |-  ( -. D e. _V -> ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) | 
						
							| 45 | 28 44 | pm2.61i |  |-  ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 46 | 5 45 | eqtri |  |-  N = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |