| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m1expcl | ⊢ ( 𝑋  ∈  ℤ  →  ( - 1 ↑ 𝑋 )  ∈  ℤ ) | 
						
							| 2 | 1 | zcnd | ⊢ ( 𝑋  ∈  ℤ  →  ( - 1 ↑ 𝑋 )  ∈  ℂ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( - 1 ↑ 𝑋 )  ∈  ℂ ) | 
						
							| 4 |  | m1expcl | ⊢ ( 𝑌  ∈  ℤ  →  ( - 1 ↑ 𝑌 )  ∈  ℤ ) | 
						
							| 5 | 4 | zcnd | ⊢ ( 𝑌  ∈  ℤ  →  ( - 1 ↑ 𝑌 )  ∈  ℂ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( - 1 ↑ 𝑌 )  ∈  ℂ ) | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 9 |  | expne0i | ⊢ ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0  ∧  𝑌  ∈  ℤ )  →  ( - 1 ↑ 𝑌 )  ≠  0 ) | 
						
							| 10 | 7 8 9 | mp3an12 | ⊢ ( 𝑌  ∈  ℤ  →  ( - 1 ↑ 𝑌 )  ≠  0 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( - 1 ↑ 𝑌 )  ≠  0 ) | 
						
							| 12 | 3 6 11 | divrecd | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( ( - 1 ↑ 𝑋 )  /  ( - 1 ↑ 𝑌 ) )  =  ( ( - 1 ↑ 𝑋 )  ·  ( 1  /  ( - 1 ↑ 𝑌 ) ) ) ) | 
						
							| 13 |  | m1expcl2 | ⊢ ( 𝑌  ∈  ℤ  →  ( - 1 ↑ 𝑌 )  ∈  { - 1 ,  1 } ) | 
						
							| 14 |  | elpri | ⊢ ( ( - 1 ↑ 𝑌 )  ∈  { - 1 ,  1 }  →  ( ( - 1 ↑ 𝑌 )  =  - 1  ∨  ( - 1 ↑ 𝑌 )  =  1 ) ) | 
						
							| 15 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 16 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 17 |  | divneg2 | ⊢ ( ( 1  ∈  ℂ  ∧  1  ∈  ℂ  ∧  1  ≠  0 )  →  - ( 1  /  1 )  =  ( 1  /  - 1 ) ) | 
						
							| 18 | 15 15 16 17 | mp3an | ⊢ - ( 1  /  1 )  =  ( 1  /  - 1 ) | 
						
							| 19 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 20 | 19 | negeqi | ⊢ - ( 1  /  1 )  =  - 1 | 
						
							| 21 | 18 20 | eqtr3i | ⊢ ( 1  /  - 1 )  =  - 1 | 
						
							| 22 |  | oveq2 | ⊢ ( ( - 1 ↑ 𝑌 )  =  - 1  →  ( 1  /  ( - 1 ↑ 𝑌 ) )  =  ( 1  /  - 1 ) ) | 
						
							| 23 |  | id | ⊢ ( ( - 1 ↑ 𝑌 )  =  - 1  →  ( - 1 ↑ 𝑌 )  =  - 1 ) | 
						
							| 24 | 21 22 23 | 3eqtr4a | ⊢ ( ( - 1 ↑ 𝑌 )  =  - 1  →  ( 1  /  ( - 1 ↑ 𝑌 ) )  =  ( - 1 ↑ 𝑌 ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( ( - 1 ↑ 𝑌 )  =  1  →  ( 1  /  ( - 1 ↑ 𝑌 ) )  =  ( 1  /  1 ) ) | 
						
							| 26 |  | id | ⊢ ( ( - 1 ↑ 𝑌 )  =  1  →  ( - 1 ↑ 𝑌 )  =  1 ) | 
						
							| 27 | 19 25 26 | 3eqtr4a | ⊢ ( ( - 1 ↑ 𝑌 )  =  1  →  ( 1  /  ( - 1 ↑ 𝑌 ) )  =  ( - 1 ↑ 𝑌 ) ) | 
						
							| 28 | 24 27 | jaoi | ⊢ ( ( ( - 1 ↑ 𝑌 )  =  - 1  ∨  ( - 1 ↑ 𝑌 )  =  1 )  →  ( 1  /  ( - 1 ↑ 𝑌 ) )  =  ( - 1 ↑ 𝑌 ) ) | 
						
							| 29 | 13 14 28 | 3syl | ⊢ ( 𝑌  ∈  ℤ  →  ( 1  /  ( - 1 ↑ 𝑌 ) )  =  ( - 1 ↑ 𝑌 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( 1  /  ( - 1 ↑ 𝑌 ) )  =  ( - 1 ↑ 𝑌 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( ( - 1 ↑ 𝑋 )  ·  ( 1  /  ( - 1 ↑ 𝑌 ) ) )  =  ( ( - 1 ↑ 𝑋 )  ·  ( - 1 ↑ 𝑌 ) ) ) | 
						
							| 32 | 12 31 | eqtrd | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( ( - 1 ↑ 𝑋 )  /  ( - 1 ↑ 𝑌 ) )  =  ( ( - 1 ↑ 𝑋 )  ·  ( - 1 ↑ 𝑌 ) ) ) | 
						
							| 33 |  | expsub | ⊢ ( ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0 )  ∧  ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ ) )  →  ( - 1 ↑ ( 𝑋  −  𝑌 ) )  =  ( ( - 1 ↑ 𝑋 )  /  ( - 1 ↑ 𝑌 ) ) ) | 
						
							| 34 | 7 8 33 | mpanl12 | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( - 1 ↑ ( 𝑋  −  𝑌 ) )  =  ( ( - 1 ↑ 𝑋 )  /  ( - 1 ↑ 𝑌 ) ) ) | 
						
							| 35 |  | expaddz | ⊢ ( ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0 )  ∧  ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ ) )  →  ( - 1 ↑ ( 𝑋  +  𝑌 ) )  =  ( ( - 1 ↑ 𝑋 )  ·  ( - 1 ↑ 𝑌 ) ) ) | 
						
							| 36 | 7 8 35 | mpanl12 | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( - 1 ↑ ( 𝑋  +  𝑌 ) )  =  ( ( - 1 ↑ 𝑋 )  ·  ( - 1 ↑ 𝑌 ) ) ) | 
						
							| 37 | 32 34 36 | 3eqtr4d | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑌  ∈  ℤ )  →  ( - 1 ↑ ( 𝑋  −  𝑌 ) )  =  ( - 1 ↑ ( 𝑋  +  𝑌 ) ) ) |