| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgtrinv.t |
|
| 2 |
|
symgtrinv.g |
|
| 3 |
|
symgtrinv.i |
|
| 4 |
2
|
symggrp |
|
| 5 |
|
eqid |
|
| 6 |
5 3
|
invoppggim |
|
| 7 |
|
gimghm |
|
| 8 |
|
ghmmhm |
|
| 9 |
4 6 7 8
|
4syl |
|
| 10 |
|
eqid |
|
| 11 |
1 2 10
|
symgtrf |
|
| 12 |
|
sswrd |
|
| 13 |
11 12
|
ax-mp |
|
| 14 |
13
|
sseli |
|
| 15 |
10
|
gsumwmhm |
|
| 16 |
9 14 15
|
syl2an |
|
| 17 |
10 3
|
grpinvf |
|
| 18 |
4 17
|
syl |
|
| 19 |
|
wrdf |
|
| 20 |
19
|
adantl |
|
| 21 |
|
fss |
|
| 22 |
20 11 21
|
sylancl |
|
| 23 |
|
fco |
|
| 24 |
18 22 23
|
syl2an2r |
|
| 25 |
24
|
ffnd |
|
| 26 |
20
|
ffnd |
|
| 27 |
|
fvco2 |
|
| 28 |
26 27
|
sylan |
|
| 29 |
20
|
ffvelcdmda |
|
| 30 |
11 29
|
sselid |
|
| 31 |
2 10 3
|
symginv |
|
| 32 |
30 31
|
syl |
|
| 33 |
|
eqid |
|
| 34 |
33 1
|
pmtrfcnv |
|
| 35 |
29 34
|
syl |
|
| 36 |
28 32 35
|
3eqtrd |
|
| 37 |
25 26 36
|
eqfnfvd |
|
| 38 |
37
|
oveq2d |
|
| 39 |
4
|
grpmndd |
|
| 40 |
10 5
|
gsumwrev |
|
| 41 |
39 14 40
|
syl2an |
|
| 42 |
16 38 41
|
3eqtrd |
|